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Abstract 

Background: Data mining, it is considered as knowledge discovery in data science, is the technique 

for patterns discovery and other valuable data from huge sets. Due to the evolution of data storage 

technology and the growth of big data, the use of data mining techniques has increased dramatically 

in the last two decades. The purpose of data mining is to transform the raw data of organizations into 

useful knowledge. They express the final data set and predicting the outcomes utilizing machine 

learning techniques. These approaches are utilized to supply data like the fraud detection and user 

performance, bottlenecks and even security problems. 

Methods: In the current study, after preparing data, disease prediction is done utilizing large matrix 

and data mining approaches. By investigating the new vector, it can be find out which diseases of 

matrix is near to this one with new signs employing the matrix rows to classify it. The study is 

descriptive-analytical approach which can be applicable in medical and engineering. 

Results: In this research, we implemented data mining techniques using Python software to predict 

brain and nerve diseases. 

Conclusion: The technique used by Python software, the doctor enters the symptoms of the patient 

and the output of the program indicates 3 diseases close to the input signs for each meter, and 

ultimately all the meters are evaluated and the meter that has a weaker outcome is considred each time 

it is run. The priority of each of these meters are expressed in the article  and resenting the algorithm 

employing the svd approach to predict diseases that decrease the disease duration. 

Keywords: Prediction of Neurological Diseases Treatment, Treatment Methods, Diseases, Data 

Mining, Using svd Technique 
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Introduction 

Data mining analyzes databases and large 

datasets to discover and extract valuable 

information. Such studies and explorations can 

be considered as an extension and continuity of 

ancient knowledge and intertwined statistics 

(1-3). The major difference lies in the scale, 

scope, and diversity of fields and applications, 

as well as the dimensions and sizes of today's 

data, where machine learning methods related 

to learning, modeling, and training are used in 

computer science to discover patterns among 

data, usually raw and often meaningless data 

enters the system and after necessary 

processing, results are extracted from the data, 

which are called information. General 

applications of data mining in computer 

science include: 

Discovering patterns among data 

Approximate prediction of results 

Obtaining practical information focusing on 

big data 

Data mining refers to a set of applicable 

methods on large and complex databases to 

discover hidden and interesting patterns among 

data. Data mining methods are almost always 

computationally expensive. The 

interdisciplinary science of data mining 

revolves around tools, methodologies, and 

theories used to disclose existing patterns in 

data and is considered a fundamental step 

towards discovering knowledge. There are 

various reasons why data mining has become 

such an important area of study. Some of these 

reasons are outlined below.[4] 

1. Explosive growth of data in a wide range of 

industries and universities supported by: 

Storage devices becoming cheaper and 

unlimited in capacity, such as cloud storage 

spaces 

Faster communications with higher connection 

speeds 

Better database management systems and 

software support 

2. Rapidly increasing computational 

processing power 

With such a high volume and variety of 

available data, data mining methods help 

extract information from data. In this regard, 

Jiawei Han, a data scientist and author of the 

book "Data Mining: Concepts and 

Techniques," says: 

"As a result, the data collected in databases 

have been transformed into data tombs... The 

widening gap between data and information 

necessitates the systematic development of 

data mining tools that can turn data tombs into 

gold nuggets." 

Data mining methods come in various types, 

ranging from regression to complex pattern 

detection methods with high computational 

costs rooted in computer science. The main 

goal of learning methods (data mining) is to 

make predictions. However, this is not the only 

goal of data mining. Data mining methods are 

used in the long process of research and 

product development. Therefore, the evolution 

of data mining began when business data 

started to be stored on computers. Data mining 

allows users to navigate through data in real 

time. Data mining is used in the business 

community because it utilizes three mature 

technologies. These technologies include: 

Mass Data Collection 

With powerful multi-processor computers, the 

growth and increasing attention to data mining 

algorithms have always raised the question 

"Why data mining?". In response to this 

question, it must be stated that data mining has 

many applications. Thus, it is considered a 

young and promising field for the current 

generation. This field has managed to attract a 

lot of attention to information industries and 

societies. Despite the wide range of data 

available, there is an absolute need to convert 

such data into information and knowledge. 

Therefore, humans use information and 

knowledge for a wide range of applications, 

from market analysis to disease diagnosis, 

fraud detection, and stock price prediction. In 

summary, it can be stated that the English 

proverb "Necessity is the mother of invention" 

applies to data mining, which is used for 

automating processes and making predictions 

in large databases. Questions that require 

extensive analysis can now be answered using 

data analysis. Targeted marketing is a prime 

example of predictive marketing. Additionally, 

data mining is used for targeted and optimized 

advertising emails. In fact, data mining is used 

to maximize returns on investment in sending 

advertising emails. Another predictive issue is 

bankruptcy prediction. Identifying segments of 

society that may show similar reactions to an  [
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event is another capability of data mining. Data 

mining tools are used to examine databases. It 

is also useful for identifying patterns of 

previously unknown data. A very good 

example of pattern exploration is the analysis 

of retail sales data. This task is performed to 

identify unrelated products that are usually 

purchased together. Moreover, there are other 

pattern mining issues, such as identifying 

fraudulent transactions in credit cards. In such 

cases, unknown and new data patterns can 

indicate the occurrence of credit card 

information theft and other types of fraud. 

Scientific Data 

Across the globe, various communities are 

collecting massive amounts of scientific data. 

This scientific data needs analysis. This is 

while there is always a need for more rapid 

registration of new data. Data mining in various 

scientific fields helps analyze data and discover 

knowledge from them. 

Personal and Medical Data 

Data, from personal to public and from 

individual to governmental, can be collected 

for various purposes and analyzed. These data 

are needed for different individuals and groups, 

and when collected, extracting information 

from them can unveil important issues. Among 

personal data, one can refer to individuals' 

banking transaction information or their 

medical records. Data mining plays a 

significant role in prevention, discovery, and 

even treatment of diseases in medical data. 

-Surveillance Images and Videos 

With the decrease in the price of cameras and 

the existence of cameras in smartphones, a 

large volume of multimedia data is generated 

every moment. At the same time, a large 

volume of images and videos is also collected 

by surveillance cameras. These data can be 

used for various data analysis purposes. 

-Sports Competitions 

There is a vast amount of data and statistics 

surrounding sports competitions that can be 

collected and analyzed. Among these, one can 

mention game information and player statistics. 

-Digital Media 

There are many reasons for the explosion of 

digital data repositories. These include 

affordable scanners, desktop video cameras, 

and digital cameras. At the same time, large 

companies such as NHL and NBA have begun 

the process of converting their collections into 

digital data, highlighting the need for analyzing 

massive amounts of data. 

Virtual Worlds 

There are numerous computer-aided design 

systems for architects. These systems are used 

to generate massive amounts of data. 

Additionally, software engineering data can be 

used as a source of data along with abundant 

codes for various purposes. 

Virtual Universes 

Today, many applications use three-

dimensional virtual spaces. Moreover, these 

spaces and the objects within them need to be 

described with specific languages, such as 

Virtual Reality Modeling Language. 

Reports and Text Documents 

Communications in many companies are based 

on reports and documents with textual formats. 

These documents are kept for future analysis. 

On the other hand, a vast amount of data 

available on the web for data mining is in the 

form of unstructured text data, which grows in 

volume every day. 

Data mining, also known as "knowledge 

discovery from data," is the process of 

extracting information and knowledge from 

data in databases or data warehouses. 

"Data Cleansing"; "Data Integration"; "Data 

Selection"; "Data Transformation"; "Data 

Mining"; "Pattern Evaluation"; "Knowledge 

Presentation". 

We hope that by reading this article, you will 

gain useful and effective information for future 

research. The article is prepared as follows: 

Section 2 explains the methods and techniques 

for discovering knowledge in databases and the 

concepts of data mining. It outlines the research 

strategy used in these studies. Section 3 is a part 

of the data related to symptoms and diseases 

extracted from the Aminoff book and 

specialized consultations during numerous 

sessions with a neurologist. Section 4 is about 

the disease detection and prediction algorithm. 

Section 5 is the implementation of the code 

implemented by Python software for disease 

prediction. Section 6 is the conclusion. 

After constructing this matrix using various 

data mining methods, we focused on the 

following: if a disease with specific symptoms 

is identified, it is entered into the software as 

input. The algorithm implemented using  [
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Python software generates three outputs, which 

are the diseases closest to the input symptoms. 

In other words, using large matrix methods and 

data mining techniques after matrix 

preparation, if a disease with certain symptoms 

is known, by examining a new vector, we can 

identify if this new disease with new symptoms 

will be closer to which diseases in the matrix 

rows, respectively. 

The next step is to compare different data 

mining methods used for this matrix and 

observe which one provides the optimal answer 

or has less error. The important result of this 

research is to select the best method that has the 

least time complexity to obtain results. It is 

noteworthy that this method can be generalized 

to many other situations. 

The increasing advancements in healthcare 

science have led to longer life expectancy, 

reduced mortality rates, and an increase in the 

elderly population. 

Materials and Methods  

This is a descriptive-analytical and applied 

research, with one of the most effective data 

mining methods used in it. Multiple data 

mining techniques have been employed for 

disease prediction and early diagnosis.(2,3) 

System Identification 

Identifying the domain where data mining is to 

be conducted and possessing the relevant 

knowledge for this research are crucial. 

Therefore, in the initial phase, consultation 

with a neurologist, thorough study of the 

"Clinical Neurology" book by Aminoff, as well 

as research on neurological diseases to identify 

influential factors in infection, treatment, and 

diagnostic methods, along with preventive 

measures, have been undertaken to ensure a 

proper understanding of the study domain. 

Data Preparation (Diseases and Symptoms)  

The data used in this study is sourced from the 

"Clinical Neurology" book by Aminoff, 

consultations with a neurologist, and clinical 

data. After consulting with the relevant 

physician and utilizing clinical data from 

archives, a matrix consisting of approximately 

150 rows and 500 columns has been formed. 

The elements of this matrix represent the j-th 

sign for the i-th disease. Textual studies and 

consultations with a specialized physician have 

been incorporated into the design. 

The compilation of diseases and data has been 

defined in a tabular format in Excel, with Table 

(2), (1) serving as an example where its rows 

denote diseases and its columns denote 

symptoms, following the data collection 

methods as described. Table (3) serves as an 

example representing symptom codes, and 

Table (4) serves as an example representing 

disease codes. Disease diagnosis codes have 

been modeled using Python programming and 

data mining techniques such as Manhattan 

distance, k-nearest neighbor, Pearson distance, 

Minkowski distance, and cosine similarity. 

Data representing diseases have been obtained 

for various symptoms (matrix columns) from 1 

to 150 (matrix rows). 

Table 1: Symptoms (Headache) (1) The 

compilation of diseases and data has been 

defined in a matrix format in Excel. , where its 

rows represent diseases, and the numbers 

against the rows essentially represent the 

columns indicating symptoms. Intensity of 

symptoms from zero to ten has been assigned 

based on specialized studies. 

Visualizations aid us in understanding data 

more effectively. By creating visual 

representations, we strive to transform 

numerical data into a format that humans can 

comprehend because numerical data alone may 

not be helpful. It is through modeling and 

analyzing the structure of this data that we can 

gain a proper understanding of the reality 

behind these numbers. One of the most 

important visualizations is heatmaps. The goal 

of a heatmap is, in fact, to create an initial 

clustering and display numerical information 

using colors. In the heatmap below, you can see 

numerical values represented by colors in the 

column and row sections. Each cell of this 

visualization represents a spectrum that 

corresponds to a numerical value. In the figure, 

the spectrum is displayed with different colors, 

with values below zero shown in red and those 

above zero in blue. Zero values are displayed 

in black. By viewing this heatmap, the 

magnitude of each section can be observed. 

The clustering section present in the heatmap 

aims to cluster genes or samples. Clustering 

implies that these genes or samples contain 

similar information and are grouped into a 

cluster. Various algorithms have been 

introduced for clustering, and hierarchical  [
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clustering is used in heatmaps. This type of 

clustering also utilizes different algorithms, 

which vary depending on the distance metric 

used. In this heatmap, the Euclidean distance is 

employed as the distance metric. 

Standard deviation (symbolized as σ) is one of 

the measures of dispersion that indicates how 

much the data points deviate from the mean on 

average (6-8). One of the main features of the 

median is that the sum of the absolute 

differences between various variable values 

and the median is minimized. 

There are several species of means in 

mathematics, particularly in statistics. In the 

study of the distribution of a statistical 

population, the representative value around 

which the measurements are distributed is 

called the central value, and any numerical 

measure that represents the center of a dataset 

is called a measure of central tendency. Mean 

and median are among the most common 

measures of central tendency (5). 

 

Modeling 

Various data mining methods exist for 

modeling. Therefore, in this study, modeling 

was carried out in Python software using data 

mining techniques, focusing on the 

development of predictive models. 

Jaccard Distance 

The coefficient de communaté, originally 

devised by Paul Jaccard, provides a measure of 

distance to indicate how closely two sets are 

related. It is formally written as follows under 

the name Jaccard Index or Jaccard Similarity 

Coefficient for finding the similarity between 

two items [9]: 

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑖, 𝑗)

=
#𝑢𝑠𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑏𝑜𝑡ℎ 𝑖𝑡𝑒𝑚𝑠 

#𝑢𝑠𝑒𝑟𝑠 𝑤ℎ𝑜 𝑏𝑜𝑢𝑔ℎ𝑡 𝑒𝑖𝑡ℎ𝑒𝑟 𝑖 𝑜𝑟 𝑗
 

 

Where, i represents item 1 and j represents item 

2. 

 

Measuring Distance with Lp Norms 

A general method for measuring distances is 

through Lp norms. Therefore, in this section, 

we will explore two different metrics: L1 norm, 

L2 norm, and Lp norms. 

 

 

 L1 Norm (Manhattan Distance) 

The simplest distance metric is the Manhattan 

distance, also known as the taxicab distance, 

which excels in speed. The Manhattan distance 

is calculated by summing the absolute 

differences between the x's and the y's: 

(1)   
|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| 

 

L2 Norm: 

The L2 norm, also known as the Euclidean 

norm: 

(2) 

 2

, ,2
1

n

sara pietro sara i pietro i

i

r r r r
=

= − = − 

 

1) Distance (Sara, Pietro) 

 

 Cosine Similarity 

Cosine similarity is highly prevalent in text 

processing and is utilized in collaborative 

filtering. It disregards 1-1 metrics and is 

introduced through equation (4) as follows: 

(4) 

 

1) 
,

cos( , )
x y

x y
x y

=


 

2) ( ) ,  sim i j 

3) 
2 2

1 2 2

. , ,

, ,

r r

r r
j

ri rj u i u j u

r r u i u u j u


= =

 

 

 

Discovering Hidden Genres (Categories) 

with Matrix Factorization 

Our discussion revolves around latent factors in 

content data. Now, the hidden factors related to 

collaborative filtering will be addressed, which 

refers to behavioral data. 

While many names have been discarded, I have 

considered this: hidden genres are essentially 

latent factors, particularly when discussing 

films. It is said that these factors are hidden 

because they are defined by something 

calculated by an algorithm, not by humans. 

They are biased towards data representing or 

explaining user preferences. These biases or 

factors are also hidden, as even if the data 

seems data-wise and logical, it is not easy to 

determine what these factors mean. As we 

proceed, I will explain this. Additionally, we 

will focus on something called a rating matrix. 
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Before moving forward, I would like to set a 

stage. We will begin with numerous 

discussions about Singular Value 

Decomposition (SVD) (10). It is a well-known 

linear algebra method, and there are many tools 

available to assist you in calculating existing 

matrix factorizations. I will show you a tool 

with Scikit-learn, a machine learning library 

for Python. 

With a real SVD, you can easily add new users. 

However, calculating an SVD is quite slow, 

and if you have a large dataset, it will be time-

consuming. More importantly, there are strict 

requirements regarding what should be done 

about empty cells in the rating matrix. To 

address this issue, we will move towards Funk 

SVD, which is becoming the most common 

choice for usage. Adding new users is not a 

simple task but it is feasible. 

Finding hidden factors is a task that can be 

approached in various ways. In the realm of 

collaborative filtering, finding hidden factors 

has primarily been done through matrix 

factorization based on the rating matrix. 

Data reduction can be beneficial in some cases. 

The reason for reducing dimensions could be to 

extract a signal from the data. For example, the 

top pattern represents a scatter plot of noisy 

data (disturbances), while the bottom pattern 

represents the true signal - the information 

present in the data. Simplifying data can 

sometimes make it easier to understand hidden 

information within them. 

In essence, you can have the same information 

for points on a line, as shown in the figure, only 

points that also have noise. This same principle 

applies when performing dimensionality 

reduction, where you have high-dimensional 

data. 

Consider the data in Figure 4 as a cloud of 

points that you want to project onto a lower-

dimensional space, where the distance between 

objects remains the same. Points that were 

farther apart before reduction remain farther 

apart afterward, and close cases become closer 

after reduction.  

Matrix Factorization 

= Creating a Factorization using SVD 

One of the most common methods utilized for 

matrix factorization is a technique named 

Singular Value Decomposition (SVD), to 

obtain elements for recommending to users, 

and to do this using factors extracted from the 

rating matrix.  

We want to create two matrices from the rating 

matrix M so that we can use them: one 

representing customer preferences and the 

other containing item profiles. Using SVD, we 

create three matrices: U, Σ, and Vt. Since we 

want to end up with two matrices, we multiply 

the square root of Σ into one of the other two 

matrices, leaving two matrices. But before 

doing this, we want to use an intermediate 

matrix that provides us with information about 

the amount of reduction needed. Figure 5 

shows SVD. 

Figure 5 represents a matrix that can be 

decomposed into three matrices: 

M: The matrix you want to decompose; in your 

case, it is the rating matrix. 

U: The user composition matrix. 

Σ: The diagonal weights matrix. 

VT: The item composition matrix. 

Diagonal Matrix 

A diagonal matrix is one that has only zero 

values. 

The central diagonal matrix Σ contains 

components sorted from largest to smallest. 

These components are called singular values, 

and they represent the amount of information 

generated by this combination for the dataset. 

A combination here refers to a column in the 

user matrix U and a row in the item matrix VT 

(both). Now, you can choose r combinations 

and consider the rest of the diagonal as zeros. 

When you consider the values outside the 

central box as zeros, what remains from the 

matrices is removing all the rightmost columns 

in the user matrix U and all the bottom rows 

from V*, while keeping only the top r rows. 

How much should we reduce (shrink) the 

matrices? 

We can reduce the dimensions using two cases, 

and still create a plot similar to the one shown 

in Figure 6. Another good reason for reducing 

the matrix to two dimensions is that by 

observing the weights in the sigma matrix (Σ), 

we can obtain more information using just two 

combinations. 

Dealing with zeros in the rating matrix by 

using imputation 

However, often you will encounter situations 

where only 1% of the cells in the rating matrix 

have values. Something needs to be done. To  [
 D

ow
nl

oa
de

d 
fr

om
 in

tjm
i.c

om
 o

n 
20

25
-0

8-
16

 ]
 

                             6 / 22

https://intjmi.com/article-1-1210-en.html


  Int J Med Invest 2024; Volume 13; Number 4; 106-127                             http://intjmi.com 

  
achieve this goal, we have two common 

methods: 

*We can calculate the average of each element 

(or user) and fill each row (or column) of this 

matrix, which contains zeros, with this average. 

* We normalize each row in such a way that all 

components are centered around zero, so the 

zeros will become the mean. 

Both approaches are considred as imputation. 

This solution shows you part of the way, but we 

can have better performance with something 

called baseline predictors, which we will 

discuss soon. In the next step, we will fill the 

zero cells with averages obtained (product 

obtained) from the ratings. 

Normalizing the ratings 

Calculate the average of the movies 

r_average=M[M>0.0]. mean () ⟵ 

Set zero for all inputs for NaN (not a number) 

M[M==0] =np.NaN← 

Fill all NaNs with averages M.fillna 

(r_average,inplace=True)← 

 

Adding a New User with Insertion (Folding 

in New Entries) 

An interesting point about the SVD method is 

that we can fold in new users and items to the 

system. 

Expressed as a vector, it will be as follows: 

𝑟𝑘𝑖𝑚 = (4.0, 5.0,0.0,3.0,3.0,0.0) 

You can compute the new row using the 

formula below: (Figure 7) 

𝑢𝑘𝑖𝑚 = 𝑟𝑘𝑉𝑡∑−1 

Where, ukim is the user vector in the reduced 

space representing the new user. *rk is the 

vector for rating the new user. ∑(-1) is the 

inverse of the sigma matrix. VT is the item 

matrix. 

To use this in Python, we have executed the 

following code in a sample script: 

 

Folding in new users 

𝑓𝑟𝑜𝑚 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑎𝑙𝑔 𝑖𝑚𝑝𝑜𝑟𝑡 𝑎𝑛𝑣  

𝑟𝑘𝑖𝑚 = 𝑛𝑝. 𝑎𝑟𝑟𝑎𝑦([4.0,5.0,0.0,3.0,3.0,0.0]) 

𝑢𝑘𝑖𝑚

= 𝑟𝑘𝑖𝑚 𝑣∗ 𝑡_𝑟𝑒𝑑𝑢𝑐𝑒𝑑. 𝑇∗ 𝑖𝑛𝑣(𝑆𝑖𝑔𝑚𝑎_𝑟𝑒𝑑𝑢𝑐𝑒𝑑) 

Now, we can also predict ratings for the user 

"kim". Similarly, we can fold in a new item 

using the following formula: 

𝑖̂𝑛𝑒𝑤 = 𝑟𝑛𝑒𝑤 𝑖𝑡𝑒𝑚
𝑇 𝑈∑−1 

* inew is a vector in the reduced space 

representing the new item. 

* r new item is the rating vector of the new 

item. 

*∑-1 is the inverse of the sigma matrix. 

*-U is the user matrix. 

Remember, this reduction is done to extract 

topics from the data. When you add a new user 

or item, these topics do not update; they are 

compared with the discussions that were 

previously available. 

Updating SVD is often important as much as 

possible. Depending on the number of new 

users and items, you should perform this task 

once a day or once a week. An interesting point 

about folding in a new user is that if the new 

user only has one rating, whether it is high or 

low, it does not matter. The recommendation 

list will remain exactly the same. 

Performing Recommendations with SVD 

There are two methods for providing 

recommendations: calculating all predicted 

ratings and considering the highest-rating items 

that the user has not encountered before, or 

iterating through each item and obtaining 

similar dot products in the reduced space. The 

third method can involve utilizing your new 

matrices to compute collaborative filtering. 

The reason for considering this as a good idea 

is that matrices contain all non-zero inputs (at 

least if normalized). In this compressed space, 

you have a much better chance of finding 

similar items or users. 

I could continue writing about SVD and its 

capabilities, but I would like to explore another 

type of reduction method, similar to SVD but 

much more efficient for computation. The SVD 

method you have seen so far has several 

drawbacks: first, dealing with unfilled cells in 

the rating matrix is necessary, and computing 

large matrices is slow. On the positive side, 

adding new users when they enter is possible. 

However, keep in mind that the SVD model is 

static and should ideally be updated frequently. 

The next matrix decomposition algorithm is 

interesting, but as always, I will take a moment 

to focus on something called baseline 

predictors, which make filling in the gaps in the 

matrix easier. Although they can be used as a 

recommendation system, here they are used as 

a method for better matrix decomposition. 
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Baseline Predictors 

Apart from the types of items and user 

preferences, there are other aspects of items 

and users that can be considered. If a movie is 

generally considered good, its average rating is 

likely slightly higher than the global average of 

all movies, and conversely, if a movie is 

considered bad, its average rating is likely 

lower than the global average. If you have such 

information, you can add a slightly higher 

default rating to an item. However, some users 

may be more important or positive compared to 

others. An item that is above or below the 

average can be said to be biased. The same 

applies to users; you can say that users have 

biases compared to the global average. 

If you are able to extract these biases for items 

and users, then you are in a position to provide 

baseline predictors, which are much better than 

using averages, as you did earlier when filling 

in empty cells of the rating matrix. Using these 

biases, you can create baseline predictors. A 

baseline predictor is the sum of the global 

average, plus the item bias, plus the user bias. 

You will use the following equation: 

𝑏𝑢𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 

Where, 

*bu is the baseline prediction for item i for user 

u. 

*bu is the user bias. 

*bi is the item bias. 

*μ is the mean of all ratings. 

 

Estimation of Biases by Least Squares 

You want to obtain biases that represent 

baseline predictions close to known ratings. If 

you consider the same ratings used previously, 

you will ask what values should be determined 

for the biases to minimize the following 

relationship as much as possible. 

min (𝑟(𝑠𝑎𝑟𝑎,𝑐𝑖𝑣𝑖𝑙 𝑤𝑎𝑟) − 𝑏(𝑠𝑎𝑟𝑎,𝑐𝑖𝑣𝑖𝑙 𝑤𝑎𝑟))2 

min (𝑟(𝑠𝑎𝑟𝑎,𝑐𝑖𝑣𝑖𝑙 𝑤𝑎𝑟) − 𝜇−𝑏𝑠𝑎𝑟𝑎 − 𝑏𝑐𝑖𝑣𝑖𝑙 𝑤𝑎𝑟)2 

To ensure that no one is left behind, I will 

quickly address this task. This equation 

signifies your effort to find bs that minimizes 

or least squares the equation. For multiple 

ratings, it can be written as follows: 

min
𝑏

∑ (𝑟(𝑢,𝑖) − 𝜇 − 𝑏𝑢 − 𝑏𝑖)
2

(𝑢,𝑖)∈𝐾
 

Where, 

(u, i) ϵ K represents all the ratings you have had 

so far. 

A simpler method to find these biases is to 

utilize the equations described in this section. 

Initially, compute the bias for each user (bu) by 

considering the sum of differences between 

user ratings and the mean, then divide it by the 

number of ratings, meaning the result is the 

average difference between the mean and user 

ratings. 

𝑏𝑢 =
1

|𝐼𝑢|
∑(𝑟𝑢,𝑖 − 𝜇)

𝑖∈𝐼𝑢

 

After calculating all user biases, compute the 

item bias (bi) using the same method. 

𝑏𝑖 =
1

|𝑈𝑖|
∑ (𝑟𝑢,𝑖 − 𝑏𝑢 − 𝜇)

𝑢∈𝑈𝑖

 

The biases calculated can be used to fill in 

empty spaces in the rating matrix, instead of 

SVD, or in fact, most matrix factorization 

algorithms, may perform better. I have 

calculated the biases for test data. 

While we talk about bias as static, a user can 

range from a happy individual to a grumpy 

elder, and biases should adjust to reflect that. 

This applies to item bias adjustment over time 

as well since items enter and exit fashions. 

Predictions of ratings can also vary over time, 

so you can consider your rating prediction 

function as a function of time. In such cases, 

you need to modify the previous equation to the 

following time-dependent equation: 

𝑏𝑢𝑖(𝑡) = 𝜇 + 𝑏𝑢(𝑡) + 𝑏𝑖(𝑡) 

Consider this especially if you have long-term 

data with numerous ratings. If you want to 

improve the accuracy of your recommender, 

keep this in mind. 

If your data spans a long period and has many 

ratings, you should pay attention to the 

temporal aspects. Otherwise, start with a 

simpler approach and then upgrade. You can 

delve into research describing how to approach 

this. A good starting point is collaborative 

filtering with temporal dynamics by [10-12]. 

 

Decomposition Using Funk SVD 

The SVD method puts significant weight on the 

rating matrix, but this is a sparse matrix (quiet, 

scattered, low density), and one should not 

heavily rely on the concept that the likelihood 

of finding a crowded cell with a rating can be 

less than 1%. Instead of using the entire matrix,  [
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Simon Funk proposed a method where only the 

necessary things are used.  

You start this method by looking at RMSE, 

which is used to provide a measure of how 

close you are to the known rating. By looking 

at your toolbox, you will notice something 

called gradient descent, which uses RMSE to 

improve the solution. When you have that, you 

will pay attention to using baseline predictors. 

Earlier, I referred to them as a method for better 

prediction compared to average rating 

information. By learning all these, you will 

explore the Funk SVD algorithm. 

 

Adding Biases 

In the previous section, we discussed biases. 

Even though this equation may be slightly 

complex, adding them is valuable. 

The approach I am considering is one where the 

user prefers a specific type of movie, encoded 

in the user factors, while a negative (or 

positive) bias is encoded in the item factors. 

Now, a predicted rating is the sum of these four 

components, as shown in Figure 8. 

When adding them to the equation, the new 

function you want to minimize is as follows: 

𝑚𝑖𝑛𝑏,𝑝,𝑞 ∑ (𝑟𝑖𝑢 − 𝜇 − 𝑏𝑢 − 𝑏𝑖 − 𝑞𝑖𝑝𝑢)2

(𝑢,𝑖)∈𝐾

 

You perform this according to the stochastic 

gradient descent approach and by considering 

the derivative of the mean squared error, you 

obtain these equations. 

If your rating matrix is sparse, you may 

encounter issues (problems) of overfitting. 

Overfitting occurs as matrices U and V can 

precisely calculate appropriate values for 

existing ratings, but when it comes to 

predicting new cases, they completely fail. One 

way to address this is by introducing something 

called a regularization term, which minimizes 

the following relationship: 

𝑚𝑖𝑛𝑢𝑣 ∑ (𝑟𝑢𝑖 − 𝑢𝑢𝑣𝑖) + 𝜆(||𝑢||2

(𝑢,𝑖)∈𝑘𝑛𝑜𝑤𝑛

+ ||𝑣||2)  

 

Brute Force Recommendation (Theory, 

Recommendation) Calculation 

The brute force recommendation is 

straightforward: determine a predicted rate for 

each user and item, then sort all predictions and 

return the top N. While doing this, you can also 

save all predictions for use when users visit 

later. 

This is a non-negligent (nonsense) method of 

doing unnecessary work. Keep in mind that 

doing this may require a lot of time and force 

your system to perform many computations 

that will never be used. You can optimize this 

to some extent, but a better approach is to save 

factors and biases and use them to calculate 

recommendations. 

Instead of using the original rating data, you 

can use the factors you have calculated 

yourself. This means you calculate similarities 

where items are closer and in smaller 

dimensions, making the task easier. 

If you have already observed the factor space, 

you can create user-based or item-based 

recommendations. Either way, you will benefit 

from the vectors created representing users and 

items. 

Results 

Python Code Implemented on Data 

After collecting the data, we implemented the 

algorithm shown in the figure using Python. 

The metrics show the closest similarities to our 

input symptoms. When a patient visits a doctor 

with specific symptoms, the doctor enters the 

symptoms into the software we have 

implemented, and ultimately the output will 

show the three diseases closest to the 

symptoms for predicting the disease to the 

doctor. Further comparisons are made between 

the metrics, and the worst metric, which has 

weaker results compared to the others, is 

determined. In the Appendix A, the program 

execution is included, and the results are 

presented for further information. 

 

Running the Code and Disease Prediction  

After preparing the data and implementing the 

algorithm in Table 5, the execution of the code 

for disease prediction is presented in Figure 1 

in this section. Data mining is capable of 

discovering and extracting new knowledge 

from past data. The preprocessing of data and 

the selection of variables also have a significant 

impact on knowledge discovery. Various data 

mining techniques exist for disease prediction. 

In this article, five data mining algorithms were 

used, which will be explained further. The 

empirical results demonstrate the effectiveness 

and reliability of all three methods compared  [
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based on sensitivity, specificity, and accuracy. 

Pruning and boosting techniques were 

employed to find the desired structure and 

improve the accuracy and validity of the 

results. The examined database in this article 

focused on data mining prediction approaches 

in neurological diseases and their diagnosis. 

Therefore, based on the notes mentioned 

regarding research gaps and the use of data 

mining prediction approaches in early 

detection of various diseases (medical), new 

research can be initiated in this field (5, 6). 

 

Example 1.5. As an example, we examined a 

sample and entered the disease symptoms in 

order, including decreased level of 

consciousness, confusion (B=9), neck stiffness 

(D=8), and bilateral extensor plantar response 

(G=6) into the software implemented with 

Python. The software outputs diseases close to 

this patient's condition, and the output is shown 

according to various metrics. The Jaccard 

metric output indicates three diseases, namely 

migraine, spinocerebellar degeneration due to 

Phenytoin, and vasovagal syncope. The 

Minkowski metric output indicates muscular 

dystrophy diseases, Duchenne muscular 

dystrophy, and facioscapulohumeral muscular 

dystrophy. All output diseases are close to the 

input symptoms in the domain of motor 

disorders, sensory impairments, motor deficits, 

and visual impairments. Our software 

identified the weakest metric, which indicates 

weaker results compared to other metrics, as 

the Pearson metric. Additionally, using the 

SVD technique, the program executes in less 

time. The results were reviewed with a 

neurology specialist, and the examination 

outcome showed that the results are entirely 

acceptable and accurate. 

This graph represents the evaluation of the 

target algorithm. Cross-validation technique 

has been employed, with K set as 40 as 

depicted in Figures 11 and 12. Cross-validation 

has been performed on 40 configurations, and 

accuracy has been calculated. The results are 

illustrated below. Upon examining the results 

of matrix factorization, I believe achieving a 

service coverage of up to 95% for diseases is 

excellent. 

One way to look at the data is to compare the 

training error with the testing error, as shown 

in the figure below. It is crucial for the lines to 

have an angle less than or equal to 45 degrees, 

indicating that the test error is proportional to 

the training error. It is advisable to run the 

experiment for a certain number of iterations, 

such as 50 or 100 times, while some articles 

suggest looking at RMSE for each iteration and 

stopping when the change in RMSE is less than 

a certain threshold. Plotting MSE as shown 

below, it is a good idea to look for intersections 

in the graph. The intersection is often where the 

algorithm avoids overfitting to its known data 

and starts to overfit excessively. A line in the 

figure below represents training with 75 

factors. As you can see, the testing MSE has a 

small intersection at around 400 iterations. 

Here we should only use 20 factors because the 

test line with 20 factors has a small intersection 

at around 275 iterations, so it might be a good 

place to stop. 

The return values of this function increase as 

the items become more similar. The better 

method depends on your domain and data. In 

general, the relationship between similarity and 

distance is as follows: 

As the distance increases, similarity tends 

towards zero. 

As the distance tends towards zero, similarity 

tends towards one. 

In this section, we measure similarity using 

different algorithms and compare their 

accuracies with each other. 

Conclusion 

The aim of this research was to design an 

efficient model for discovering knowledge in 

predicting neurological diseases based on the 

latest dataset of indicators in this field related 

to public health and to provide an accurate 

analysis of data mining techniques for 

predicting neurological diseases. In other 

words, research efforts have been made to 

employ data mining techniques based on the 

use of disease and symptom datasets through 

business intelligence programs to provide 

important results in accurate decision-making 

and timely presentations (7,8). For 

comprehensive explanations and overall 

conclusions, various metrics were utilized and 

the algorithm was implemented using Python 

software for predicting neurological diseases. 

The advantages of each of these metrics have 

been elaborated upon, and the SVD technique  [
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has also been employed to reduce program 

execution time for disease prediction. 
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Tables & Figures 

Table 1: Intensity of symptoms 

 

Disease Symptoms (Headache) 

Subarachnoid hemorrhage 10 

Meningitis or encephalitis 9 

Intracranial hypertension (encephalopathy) 9 

Giant cell arteritis 9 

Intracranial mass 8 

Pseudotumor cerebri (idiopathic intracranial hypertension) 9 

Trigeminal neuralgia 0 

Glossopharyngeal neuralgia 0 

Postherpetic neuralgia 0 

Hypertension 9 

 

 

Table 2: Symptoms B (5) (Decreased level of consciousness, confusion) 

 

Diseases Symptoms (Decreased level 

of consciousness, confusion) 

Subarachnoid hemorrhage 9 

Meningitis or encephalitis 9 

Intracranial hypertension (encephalopathy) 0 

Giant cell arteritis 0 

Intracranial mass 7 

Pseudotumor cerebri (idiopathic intracranial hypertension) 0 

Trigeminal neuralgia 0 

Glossopharyngeal neuralgia 0 

Postherpetic neuralgia 0 

Hypertension 0 

 

 

 

Table 3: Some symptoms extracted from Aminoff’s book and consultation with a specialist 

physician (4). 

Code Symptoms Code Symptoms 

A Headache G Plantar reflex (bilateral extensor or Babinski 

reflex) 

B Decreased level of 

consciousness (confusion) 

H Hemiparesis (paralysis of one limb or one side 

of the body) 

C Vomiting I Aphasia (speech disturbance) 

D Stiff neck J Visual field defects or visual changes 

E High blood pressure K Herniation 

F Fever L Progressive drowsiness 
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Table 4: Some of the diseases extracted from Aminoff's book and consultation with a specialist 

physician (4). 

 

1) Subarachnoid hemorrhage 

2) Meningitis or encephalitis 

3) Hypertensive encephalopathy 

4) Giant cell arteritis 

5) Intracranial mass 

6) Pseudotumor cerebri (Idiopathic intracranial hypertension) 

7) Trigeminal neuralgia 

8) Glossopharyngeal neuralgia 

9) Postherpetic neuralgia 

10) Hypertension 

11) Atypical facial pain 

12) Migraine 

13) Cluster headache 

14) Tension-type headache 

15) Ice pick headache 

 

 

 
Figure 1. Standard deviation data 

 

 

 
Figure 2. Mean data 
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Figure 3. Check the median data and the standard deviation data and the mean data 

 

 

 
Figure 4 .depicts a scatter plot of noisy data points (upper) and signals that reveal the information 

present in the data (lower). 

 

 

 
Figure 5: Singular Value Decomposition procedure 
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Figure 6. SVD reduction to zero by setting small values in Σ. 

 

 

 

 
Figure 7. Graphs illustrating the technique of folding in (folding in new items) using SVD 

 

 

Detailed Program  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑒𝑎𝑛 = 𝑀[𝑀 > 0]. 𝑚𝑒𝑎𝑛(⬚). 𝑚𝑒𝑎𝑛(⬚) 

𝑀_𝑚𝑖𝑛𝑢𝑠_𝑚𝑒𝑎𝑛 = 𝑀[𝑀 > 0] − 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑒𝑎𝑛 

𝑢𝑠𝑒𝑟_𝑏𝑖𝑎𝑠 = 𝑀_𝑚𝑖𝑛𝑢𝑠_𝑚𝑒𝑎𝑛. 𝑇. 𝑚𝑒𝑎𝑛(⬚) 

𝑖𝑡𝑒𝑚_𝑏𝑖𝑎𝑠 = 𝑀_𝑚𝑖𝑛𝑢𝑠_𝑚𝑒𝑎𝑛. 𝑎𝑝𝑝𝑙𝑦(𝑙𝑎𝑚𝑏𝑑𝑎 𝑟: 𝑟 − 𝑢𝑠𝑒𝑟_𝑏𝑖𝑎𝑠). 𝑚𝑒𝑎𝑛(⬚) 

 

Obtaining the global mean, which can be done initially 

by obtaining the mean of each column and then finding 

the mean of those means. 
Subtracting the global mean from all non-zero 

ratings. 

The mean of each row is equal to the user 

bias. 

Subtracting the user bias from each row, then 

considering the mean of each column gives 

you the item bias. 
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Temporal Dynamics 

 
Figure 8. A predicted rating is a combination of these four elements. 

 

 

 

 
MSE Test 

Figure 9. Compares the MSE test with the training MSE to indicate whether over fitting occurs or not. 
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Figure 10: Execution of Python Code for Disease Prediction and Interpretation of Results in Example 

1.5 

 

 

 

 
Figure 11. Similarity check diagram using svd 
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Figure 12. Similarity check diagram using data mining techniques 

 

 

Appendix A: Code 

from math import sqrt 

import pandas as pd 

from numpy import dot 

from collections import Counter 

from itertools import chain 

from numpy import linalg  

import numpy as np 

from scipy.linalg import svd 

def jaccard_similarity(arr1, arr2): 

intersection = len(list(set(arr1).intersection(arr2))) 

 union = (len(set(arr1)) + len(set(arr2))) – intersection 

return float(intersection) / union 

def l1_norm(arr): 

return sum([abs(i) for i in arr]) 

def l2_norm(arr): 

return sqrt(sum([pow(i, 2) for i in arr])) 

def cosine_similarity_l1(arr1, arr2): 

    return dot(arr1, arr2) / (l1_norm(arr1) * l1_norm(arr2)) 

def cosine_similarity_l2(arr1, arr2): 

    return dot(arr1, arr2) / (l2_norm(arr1) * l2_norm(arr2)) 

def recommend(df, disease_name): 

    distance_type = input        'Distance Type ( 1: Jaccard similarity, 2: Cosine similarity l1-norm, 3: 

Cosine similarity l2-norm): ') 

do_compare = input('Do you want to compare distances? (y (yes), n (no)): ') 

   distance = [] 

    distances = [] 

  for i in range(df.shape[0]): 

       if i != disease_name:            distance.append(jaccard_similarity(df.iloc[disease_name].values, 

df.iloc[i].values)) 

   distances.append(distance) 

    distance = [] 
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    for i in range(df.shape[0]): 

        if i != disease_name: 

            distance.append(cosine_similarity_l1(df.iloc[disease_name].values, df.iloc[i].values)) 

    distances.append(distance) 

    distance = [] 

    for i in range(df.shape[0]): 

        if i != disease_name: 

            distance.append(cosine_similarity_l2(df.iloc[disease_name].values, df.iloc[i].values)) 

    distances.append(distance) 

    if distance_type == '1': 

        print('Jaccard similarity (top 3): ', numpy.argsort(distances[0])[0:3], sorted(distances[0])[0:3]) 

    if distance_type == '2': 

        print('Cosine similarity l1-norm (top 3): ', numpy.argsort(distances[1])[0:3], 

sorted(distances[1])[0:3]) 

    if distance_type == '3': 

        print('Cosine similarity l2-norm (top 3): ', numpy.argsort(distances[2])[0:3], 

sorted(distances[2])[0:3]) 

    if do_compare == 'y': 

        print('Jaccard similarity (top 3): ', numpy.argsort(distances[0])[0:3], sorted(distances[0])[0:3]) 

        print('Cosine similarity l1-norm (top 3): ', numpy.argsort(distances[1])[0:3], 

sorted(distances[1])[0:3]) 

        print('Cosine similarity l2-norm (top 3): ', numpy.argsort(distances[2])[0:3], 

sorted(distances[2])[0:3]) 

        counts = Counter(chain(*map(set, 

                                    [sorted(distances[0])[0:3], sorted(distances[1])[0:3], 

sorted(distances[2])[0:3]]))) 

common_remove = [[i for i in sublist if counts[i] == 1] for sublist in    [sorted(distances[0])[0:3], 

sorted(distances[1])[0:3], sorted(distances[2])[0:3]]] 

        list_size = [] 

        for i in range(len(common_remove)): 

            list_size.append(len(common_remove[i])) 

        max_size_list = list_size.index(max(list_size)) 

            if max_size_list == 0: 

            print('\n' + 'Worst distance calculation is Jaccard similarity') 

        if max_size_list == 1: 

            print('\n' + 'Worst distance calculation is Cosine similarity l1-norm') 

        if max_size_list == 2: 

            print('\n' + 'Worst distance calculation is Cosine similarity l2-norm') 

disease_name = 100 

dfs = pd.read_excel('Future_Signs_final(1).xlsx', header=None) 

first_row = dfs.iloc[0, 1:] 

first_column = dfs.iloc[1:, 0] 

first_row.to_excel("features.xlsx", sheet_name='Sheet1') 

first_column.to_excel("disease_names.xlsx", sheet_name='Sheet1') 

df = dfs.iloc[1:, 1:] 

X= dfs.iloc[1:,1:].values 

Y = X.astype('float64') 

# SVD 

U, Sigma, Vt = svd(Y) 

#print(U) 

#print(Sigma) 

#print(Vt)  [
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# reducing the matrix  

def rank_k(k): 

    U_reduced= np.mat(U[:,:k]) 

    Vt_reduced= np.mat(Vt[:k,:]) 

    Sigma_reduced= np.eye(k)*Sigma[:k] 

    return U_reduced, Sigma_reduced, Vt_reduced, 

U_reduced, Sigma_reduced,  Vt_reduced= rank_k(4) 

Y_hat = U_reduced * Sigma_reduced * Vt_reduced 

#Predict a rating 

Y_hat_matrix = pd.DataFrame(Y_hat).round(2) 

#Reducing the matrix 

def rank_k2(k): 

    U_reduced= np.mat(U[:,:k]) 

    Vt_reduced = np.mat(Vt[:k,:]) 

    Sigma_reduced = Sigma_reduced = np.eye(k)*Sigma[:k] 

    Sigma_sqrt = np.sqrt(Sigma_reduced) 

    return U_reduced*Sigma_sqrt, Sigma_sqrt*Vt_reduced 

U_reduced, Vt_reduced = rank_k2(4) 

Y_hat2 = U_reduced * Vt_reduced 

def meta_parameter_train(self, ratings_df): 

  for k in [5, 10, 15, 20, 30, 40, 50, 75, 100]: 

        self.initialize_factors(ratings_df, k) 

        test_data, train_data = self.split_data(10, ratings_df) 

        columns = df.columns 

        ratings = train_data[columns].as_matrix() 

        test = test_data[columns].as_matrix() 

        self.MAX_ITERATIONS = 100 

        iterations = 0 

        index_randomized = random.sample(range(0, len(ratings)),(len(ratings) - 1)) 

        for factor in range(k): 

            factor_iteration = 0 

            last_err = 0 

            iteration_err = sys.maxsize 

            finished = False 

            while not finished: 

                train_mse = self.stocastic_gradient_descent(factor,index_randomized,ratings) 

                iterations += 1 

                finished = self.finished(factor_iteration,last_err,iteration_err) 

                last_err = iteration_err 

                factor_iteration += 1 

                test_mse = self.calculate_mse(test, factor) 

def initialize_factors(self, ratings, k=25): 

    self.disease_name = set(ratings['disease_name'].values) 

    self.features = set(ratings['features'].values) 

    self.u_inx = {r: i for i, r in enumerate(self.disease_name)} 

    self.i_inx = {r: i for i, r in enumerate(self.features)} 
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    self.distance_factors = np.full((len(self.i_inx), k), 0.1) 

    self.disease_name_factors = np.full((len(self.u_inx), k), 0.1) 

    self.all_features_mean = self.calculate_all_features_mean(ratings) 

    self.disease_name_bias = defaultdict(lambda: 0) 

    self.distance_bias = defaultdict(lambda: 0) 

def predict(self, disease_name, distance): 

    avg = self.all_features_mean 

    pq = np.dot(self.distance_factors[distance],self.disease_name_factors[disease_name].T) 

    b_ui = avg + self.disease_name_bias[disease_name] + self.distance_bias[distance] 

    prediction = b_ui + pq 

    if prediction > 10: 

        prediction = 10 

    elif prediction < 1: 

        prediction = 1 

    return prediction 

def train(self, ratings_df, k=20): 

    self.initialize_factors(ratings_df, k) 

    ratings = ratings_df[['disease_name_id', 'features_id', 'rate']].as_matrix() 

    index_randomized = random.sample(range(0, len(ratings)),(len(ratings) - 1)) 

    for factor in range(k): 

        iterations = 0 

        last_err = 0 

        iteration_err = sys.maxsize 

        finished = False 

        while not finished: 

            start_time = datetime.now() 

            iteration_err = self.stocastic_gradient_descent(factor,index_randomized,ratings) 

            iterations += 1 

            finished = self.finished(iterations,last_err,iteration_err) 

            last_err = iteration_err 

        self.save(factor, finished) 

def finished(self, iterations, last_err, current_err): 

    if iterations >= 100 or last_err < current_err: 

        print('Finish w iterations: {}, last_err: {}, current_err {}'.format(iterations, last_err, current_err)) 

        return True 

    else: 

        self.iterations +=1 

        return False 

    def save(self): 

    print("saving factors") 

    with open('disease_name_factors.json', 'w') as outfile: 

        json.dump(self.disease_name_factors, outfile) 

    with open('distance_factors.json', 'w') as outfile: 

        json.dump(self.distance_factors, outfile) 

    with open('disease_name_bias.json', 'w') as outfile: 

        json.dump(self.disease_name_bias, outfile) 

    with open('distance_bias.json', 'w') as outfile: 

        json.dump(self.distance_bias, outfile) 

def recommend_distance_by_ratings(self, disease_name_id, active_disease_name_distance, num=6): 

    rated_features = set(active_disease_name_distance.values('disease_name_id')) 

    disease_name = self.disease_name_factors.loc[disease_name_id] 

    scores = self.distance_factors.dot(disease_name)  [
 D

ow
nl

oa
de

d 
fr

om
 in

tjm
i.c

om
 o

n 
20

25
-0

8-
16

 ]
 

                            21 / 22

https://intjmi.com/article-1-1210-en.html


  Int J Med Invest 2024; Volume 13; Number 4; 106-127                             http://intjmi.com 

  
    scores.sort_values(inplace=True, ascending=False) 

    result = scores[:num + len(rated_disease_name)] 

    recs = r[1] + self.disease_name_bias[disease_name_id] + self.distance_bias[r[0]] 

    sorted_distance = sorted(recs.distance(),key=lambda distance:-

float(distance[1]['prediction']))[:num] 

    return sorted_distance 

show_type = input( 

    'Choose: 1: Input NoN-Zero Features From User, 2: Input Features From File, 3: Input all Features 

From user ') 

if show_type == '1': 

    how_many_number = int(input("How many non-zero Features do you have? ")) 

    print("Enter two values for %d times: First is the Feature Index (from 1 to %d) and Second is the 

Feature Value" % ( 

        how_many_number, (len(df.columns)))) 

    df.iloc[disease_name][1:len(df)] = 0 

    for i in range(how_many_number): 

        index, df.iloc[disease_name][index] = [int(x) for x in input().split()] 

    recommend(df, int(disease_name)) 

    if show_type == '2': 

    disease_name = input('Enter the Number of the disease: ') 

    recommend(df, int(disease_name)) 

    #u, sigma, vt = linalg.svd(df) 

if show_type == '3': 

    print("Enter %d Feature Values" % (len(df.columns))) 

    for i in range(len(df.columns)): 

        df.iloc[disease_name][i] = input() 

    recommend(df, int(disease_name)) 
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