
 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Original Research

Presentation of Algorithm Using SVD Technique to Predict Diseases

Shabnam Zarghami1, Gholam Hassan Shirdel2, Mojtaba Ghanbari3, Mohammad Reza Eskandari4

1. Ph.D. Student, Department of Mathematics, University of Qom, Qom, Iran. Orcid: 0000-0001-

9409-9512

2. Associate Professor, Department of Mathematics, University of Qom, Qom, Iran. Orcid: 0000-

0003-2759-4606

3. Assistant professor, Department of Mathematics, Farahan branch, Islamic Azad University,

Farahan, Iran. Orcid: 0001-0001-5874-4182

4. Neurology and Psychiatry Subspecialist, Harvard University, USA. Orcid: 0000-0003-3935-073x.

*Corresponding Author: Gholam Hassan Shirdel. Associate Professor, Department of

Mathematics, University of Qom, Qom, Iran. Email: shirdel81math@gmail.com

Abstract

Background: Data mining, it is considered as knowledge discovery in data science, is the technique

for patterns discovery and other valuable data from huge sets. Due to the evolution of data storage

technology and the growth of big data, the use of data mining techniques has increased dramatically

in the last two decades. The purpose of data mining is to transform the raw data of organizations into

useful knowledge. They express the final data set and predicting the outcomes utilizing machine

learning techniques. These approaches are utilized to supply data like the fraud detection and user

performance, bottlenecks and even security problems.

Methods: In the current study, after preparing data, disease prediction is done utilizing large matrix

and data mining approaches. By investigating the new vector, it can be find out which diseases of

matrix is near to this one with new signs employing the matrix rows to classify it. The study is

descriptive-analytical approach which can be applicable in medical and engineering.

Results: In this research, we implemented data mining techniques using Python software to predict

brain and nerve diseases.

Conclusion: The technique used by Python software, the doctor enters the symptoms of the patient

and the output of the program indicates 3 diseases close to the input signs for each meter, and

ultimately all the meters are evaluated and the meter that has a weaker outcome is considred each time

it is run. The priority of each of these meters are expressed in the article and resenting the algorithm

employing the svd approach to predict diseases that decrease the disease duration.

Keywords: Prediction of Neurological Diseases Treatment, Treatment Methods, Diseases, Data

Mining, Using svd Technique

 Submitted: 22 Sep 2024 Revised: 27 Oct 2024 Accepted: 16 Nov 2024

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 1 / 22

mailto:shirdel81math@gmail.com
https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Introduction

Data mining analyzes databases and large

datasets to discover and extract valuable

information. Such studies and explorations can

be considered as an extension and continuity of

ancient knowledge and intertwined statistics

(1-3). The major difference lies in the scale,

scope, and diversity of fields and applications,

as well as the dimensions and sizes of today's

data, where machine learning methods related

to learning, modeling, and training are used in

computer science to discover patterns among

data, usually raw and often meaningless data

enters the system and after necessary

processing, results are extracted from the data,

which are called information. General

applications of data mining in computer

science include:

Discovering patterns among data

Approximate prediction of results

Obtaining practical information focusing on

big data

Data mining refers to a set of applicable

methods on large and complex databases to

discover hidden and interesting patterns among

data. Data mining methods are almost always

computationally expensive. The

interdisciplinary science of data mining

revolves around tools, methodologies, and

theories used to disclose existing patterns in

data and is considered a fundamental step

towards discovering knowledge. There are

various reasons why data mining has become

such an important area of study. Some of these

reasons are outlined below.[4]

1. Explosive growth of data in a wide range of

industries and universities supported by:

Storage devices becoming cheaper and

unlimited in capacity, such as cloud storage

spaces

Faster communications with higher connection

speeds

Better database management systems and

software support

2. Rapidly increasing computational

processing power

With such a high volume and variety of

available data, data mining methods help

extract information from data. In this regard,

Jiawei Han, a data scientist and author of the

book "Data Mining: Concepts and

Techniques," says:

"As a result, the data collected in databases

have been transformed into data tombs... The

widening gap between data and information

necessitates the systematic development of

data mining tools that can turn data tombs into

gold nuggets."

Data mining methods come in various types,

ranging from regression to complex pattern

detection methods with high computational

costs rooted in computer science. The main

goal of learning methods (data mining) is to

make predictions. However, this is not the only

goal of data mining. Data mining methods are

used in the long process of research and

product development. Therefore, the evolution

of data mining began when business data

started to be stored on computers. Data mining

allows users to navigate through data in real

time. Data mining is used in the business

community because it utilizes three mature

technologies. These technologies include:

Mass Data Collection

With powerful multi-processor computers, the

growth and increasing attention to data mining

algorithms have always raised the question

"Why data mining?". In response to this

question, it must be stated that data mining has

many applications. Thus, it is considered a

young and promising field for the current

generation. This field has managed to attract a

lot of attention to information industries and

societies. Despite the wide range of data

available, there is an absolute need to convert

such data into information and knowledge.

Therefore, humans use information and

knowledge for a wide range of applications,

from market analysis to disease diagnosis,

fraud detection, and stock price prediction. In

summary, it can be stated that the English

proverb "Necessity is the mother of invention"

applies to data mining, which is used for

automating processes and making predictions

in large databases. Questions that require

extensive analysis can now be answered using

data analysis. Targeted marketing is a prime

example of predictive marketing. Additionally,

data mining is used for targeted and optimized

advertising emails. In fact, data mining is used

to maximize returns on investment in sending

advertising emails. Another predictive issue is

bankruptcy prediction. Identifying segments of

society that may show similar reactions to an [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 2 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

event is another capability of data mining. Data

mining tools are used to examine databases. It

is also useful for identifying patterns of

previously unknown data. A very good

example of pattern exploration is the analysis

of retail sales data. This task is performed to

identify unrelated products that are usually

purchased together. Moreover, there are other

pattern mining issues, such as identifying

fraudulent transactions in credit cards. In such

cases, unknown and new data patterns can

indicate the occurrence of credit card

information theft and other types of fraud.

Scientific Data

Across the globe, various communities are

collecting massive amounts of scientific data.

This scientific data needs analysis. This is

while there is always a need for more rapid

registration of new data. Data mining in various

scientific fields helps analyze data and discover

knowledge from them.

Personal and Medical Data

Data, from personal to public and from

individual to governmental, can be collected

for various purposes and analyzed. These data

are needed for different individuals and groups,

and when collected, extracting information

from them can unveil important issues. Among

personal data, one can refer to individuals'

banking transaction information or their

medical records. Data mining plays a

significant role in prevention, discovery, and

even treatment of diseases in medical data.

-Surveillance Images and Videos

With the decrease in the price of cameras and

the existence of cameras in smartphones, a

large volume of multimedia data is generated

every moment. At the same time, a large

volume of images and videos is also collected

by surveillance cameras. These data can be

used for various data analysis purposes.

-Sports Competitions

There is a vast amount of data and statistics

surrounding sports competitions that can be

collected and analyzed. Among these, one can

mention game information and player statistics.

-Digital Media

There are many reasons for the explosion of

digital data repositories. These include

affordable scanners, desktop video cameras,

and digital cameras. At the same time, large

companies such as NHL and NBA have begun

the process of converting their collections into

digital data, highlighting the need for analyzing

massive amounts of data.

Virtual Worlds

There are numerous computer-aided design

systems for architects. These systems are used

to generate massive amounts of data.

Additionally, software engineering data can be

used as a source of data along with abundant

codes for various purposes.

Virtual Universes

Today, many applications use three-

dimensional virtual spaces. Moreover, these

spaces and the objects within them need to be

described with specific languages, such as

Virtual Reality Modeling Language.

Reports and Text Documents

Communications in many companies are based

on reports and documents with textual formats.

These documents are kept for future analysis.

On the other hand, a vast amount of data

available on the web for data mining is in the

form of unstructured text data, which grows in

volume every day.

Data mining, also known as "knowledge

discovery from data," is the process of

extracting information and knowledge from

data in databases or data warehouses.

"Data Cleansing"; "Data Integration"; "Data

Selection"; "Data Transformation"; "Data

Mining"; "Pattern Evaluation"; "Knowledge

Presentation".

We hope that by reading this article, you will

gain useful and effective information for future

research. The article is prepared as follows:

Section 2 explains the methods and techniques

for discovering knowledge in databases and the

concepts of data mining. It outlines the research

strategy used in these studies. Section 3 is a part

of the data related to symptoms and diseases

extracted from the Aminoff book and

specialized consultations during numerous

sessions with a neurologist. Section 4 is about

the disease detection and prediction algorithm.

Section 5 is the implementation of the code

implemented by Python software for disease

prediction. Section 6 is the conclusion.

After constructing this matrix using various

data mining methods, we focused on the

following: if a disease with specific symptoms

is identified, it is entered into the software as

input. The algorithm implemented using [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 3 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Python software generates three outputs, which

are the diseases closest to the input symptoms.

In other words, using large matrix methods and

data mining techniques after matrix

preparation, if a disease with certain symptoms

is known, by examining a new vector, we can

identify if this new disease with new symptoms

will be closer to which diseases in the matrix

rows, respectively.

The next step is to compare different data

mining methods used for this matrix and

observe which one provides the optimal answer

or has less error. The important result of this

research is to select the best method that has the

least time complexity to obtain results. It is

noteworthy that this method can be generalized

to many other situations.

The increasing advancements in healthcare

science have led to longer life expectancy,

reduced mortality rates, and an increase in the

elderly population.

Materials and Methods

This is a descriptive-analytical and applied

research, with one of the most effective data

mining methods used in it. Multiple data

mining techniques have been employed for

disease prediction and early diagnosis.(2,3)

System Identification

Identifying the domain where data mining is to

be conducted and possessing the relevant

knowledge for this research are crucial.

Therefore, in the initial phase, consultation

with a neurologist, thorough study of the

"Clinical Neurology" book by Aminoff, as well

as research on neurological diseases to identify

influential factors in infection, treatment, and

diagnostic methods, along with preventive

measures, have been undertaken to ensure a

proper understanding of the study domain.

Data Preparation (Diseases and Symptoms)

The data used in this study is sourced from the

"Clinical Neurology" book by Aminoff,

consultations with a neurologist, and clinical

data. After consulting with the relevant

physician and utilizing clinical data from

archives, a matrix consisting of approximately

150 rows and 500 columns has been formed.

The elements of this matrix represent the j-th

sign for the i-th disease. Textual studies and

consultations with a specialized physician have

been incorporated into the design.

The compilation of diseases and data has been

defined in a tabular format in Excel, with Table

(2), (1) serving as an example where its rows

denote diseases and its columns denote

symptoms, following the data collection

methods as described. Table (3) serves as an

example representing symptom codes, and

Table (4) serves as an example representing

disease codes. Disease diagnosis codes have

been modeled using Python programming and

data mining techniques such as Manhattan

distance, k-nearest neighbor, Pearson distance,

Minkowski distance, and cosine similarity.

Data representing diseases have been obtained

for various symptoms (matrix columns) from 1

to 150 (matrix rows).

Table 1: Symptoms (Headache) (1) The

compilation of diseases and data has been

defined in a matrix format in Excel. , where its

rows represent diseases, and the numbers

against the rows essentially represent the

columns indicating symptoms. Intensity of

symptoms from zero to ten has been assigned

based on specialized studies.

Visualizations aid us in understanding data

more effectively. By creating visual

representations, we strive to transform

numerical data into a format that humans can

comprehend because numerical data alone may

not be helpful. It is through modeling and

analyzing the structure of this data that we can

gain a proper understanding of the reality

behind these numbers. One of the most

important visualizations is heatmaps. The goal

of a heatmap is, in fact, to create an initial

clustering and display numerical information

using colors. In the heatmap below, you can see

numerical values represented by colors in the

column and row sections. Each cell of this

visualization represents a spectrum that

corresponds to a numerical value. In the figure,

the spectrum is displayed with different colors,

with values below zero shown in red and those

above zero in blue. Zero values are displayed

in black. By viewing this heatmap, the

magnitude of each section can be observed.

The clustering section present in the heatmap

aims to cluster genes or samples. Clustering

implies that these genes or samples contain

similar information and are grouped into a

cluster. Various algorithms have been

introduced for clustering, and hierarchical [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 4 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

clustering is used in heatmaps. This type of

clustering also utilizes different algorithms,

which vary depending on the distance metric

used. In this heatmap, the Euclidean distance is

employed as the distance metric.

Standard deviation (symbolized as σ) is one of

the measures of dispersion that indicates how

much the data points deviate from the mean on

average (6-8). One of the main features of the

median is that the sum of the absolute

differences between various variable values

and the median is minimized.

There are several species of means in

mathematics, particularly in statistics. In the

study of the distribution of a statistical

population, the representative value around

which the measurements are distributed is

called the central value, and any numerical

measure that represents the center of a dataset

is called a measure of central tendency. Mean

and median are among the most common

measures of central tendency (5).

Modeling

Various data mining methods exist for

modeling. Therefore, in this study, modeling

was carried out in Python software using data

mining techniques, focusing on the

development of predictive models.

Jaccard Distance

The coefficient de communaté, originally

devised by Paul Jaccard, provides a measure of

distance to indicate how closely two sets are

related. It is formally written as follows under

the name Jaccard Index or Jaccard Similarity

Coefficient for finding the similarity between

two items [9]:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑖, 𝑗)

=
#𝑢𝑠𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑏𝑜𝑡ℎ 𝑖𝑡𝑒𝑚𝑠

#𝑢𝑠𝑒𝑟𝑠 𝑤ℎ𝑜 𝑏𝑜𝑢𝑔ℎ𝑡 𝑒𝑖𝑡ℎ𝑒𝑟 𝑖 𝑜𝑟 𝑗

Where, i represents item 1 and j represents item

2.

Measuring Distance with Lp Norms

A general method for measuring distances is

through Lp norms. Therefore, in this section,

we will explore two different metrics: L1 norm,

L2 norm, and Lp norms.

 L1 Norm (Manhattan Distance)

The simplest distance metric is the Manhattan

distance, also known as the taxicab distance,

which excels in speed. The Manhattan distance

is calculated by summing the absolute

differences between the x's and the y's:

(1)
|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|

L2 Norm:

The L2 norm, also known as the Euclidean

norm:

(2)

 2

, ,2
1

n

sara pietro sara i pietro i

i

r r r r
=

= − = −

1) Distance (Sara, Pietro)

 Cosine Similarity

Cosine similarity is highly prevalent in text

processing and is utilized in collaborative

filtering. It disregards 1-1 metrics and is

introduced through equation (4) as follows:

(4)

1)
,

cos(,)
x y

x y
x y

=


2) () , sim i j

3)
2 2

1 2 2

. , ,

, ,

r r

r r
j

ri rj u i u j u

r r u i u u j u


= =

 

Discovering Hidden Genres (Categories)

with Matrix Factorization

Our discussion revolves around latent factors in

content data. Now, the hidden factors related to

collaborative filtering will be addressed, which

refers to behavioral data.

While many names have been discarded, I have

considered this: hidden genres are essentially

latent factors, particularly when discussing

films. It is said that these factors are hidden

because they are defined by something

calculated by an algorithm, not by humans.

They are biased towards data representing or

explaining user preferences. These biases or

factors are also hidden, as even if the data

seems data-wise and logical, it is not easy to

determine what these factors mean. As we

proceed, I will explain this. Additionally, we

will focus on something called a rating matrix.

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 5 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Before moving forward, I would like to set a

stage. We will begin with numerous

discussions about Singular Value

Decomposition (SVD) (10). It is a well-known

linear algebra method, and there are many tools

available to assist you in calculating existing

matrix factorizations. I will show you a tool

with Scikit-learn, a machine learning library

for Python.

With a real SVD, you can easily add new users.

However, calculating an SVD is quite slow,

and if you have a large dataset, it will be time-

consuming. More importantly, there are strict

requirements regarding what should be done

about empty cells in the rating matrix. To

address this issue, we will move towards Funk

SVD, which is becoming the most common

choice for usage. Adding new users is not a

simple task but it is feasible.

Finding hidden factors is a task that can be

approached in various ways. In the realm of

collaborative filtering, finding hidden factors

has primarily been done through matrix

factorization based on the rating matrix.

Data reduction can be beneficial in some cases.

The reason for reducing dimensions could be to

extract a signal from the data. For example, the

top pattern represents a scatter plot of noisy

data (disturbances), while the bottom pattern

represents the true signal - the information

present in the data. Simplifying data can

sometimes make it easier to understand hidden

information within them.

In essence, you can have the same information

for points on a line, as shown in the figure, only

points that also have noise. This same principle

applies when performing dimensionality

reduction, where you have high-dimensional

data.

Consider the data in Figure 4 as a cloud of

points that you want to project onto a lower-

dimensional space, where the distance between

objects remains the same. Points that were

farther apart before reduction remain farther

apart afterward, and close cases become closer

after reduction.

Matrix Factorization

= Creating a Factorization using SVD

One of the most common methods utilized for

matrix factorization is a technique named

Singular Value Decomposition (SVD), to

obtain elements for recommending to users,

and to do this using factors extracted from the

rating matrix.

We want to create two matrices from the rating

matrix M so that we can use them: one

representing customer preferences and the

other containing item profiles. Using SVD, we

create three matrices: U, Σ, and Vt. Since we

want to end up with two matrices, we multiply

the square root of Σ into one of the other two

matrices, leaving two matrices. But before

doing this, we want to use an intermediate

matrix that provides us with information about

the amount of reduction needed. Figure 5

shows SVD.

Figure 5 represents a matrix that can be

decomposed into three matrices:

M: The matrix you want to decompose; in your

case, it is the rating matrix.

U: The user composition matrix.

Σ: The diagonal weights matrix.

VT: The item composition matrix.

Diagonal Matrix

A diagonal matrix is one that has only zero

values.

The central diagonal matrix Σ contains

components sorted from largest to smallest.

These components are called singular values,

and they represent the amount of information

generated by this combination for the dataset.

A combination here refers to a column in the

user matrix U and a row in the item matrix VT

(both). Now, you can choose r combinations

and consider the rest of the diagonal as zeros.

When you consider the values outside the

central box as zeros, what remains from the

matrices is removing all the rightmost columns

in the user matrix U and all the bottom rows

from V*, while keeping only the top r rows.

How much should we reduce (shrink) the

matrices?

We can reduce the dimensions using two cases,

and still create a plot similar to the one shown

in Figure 6. Another good reason for reducing

the matrix to two dimensions is that by

observing the weights in the sigma matrix (Σ),

we can obtain more information using just two

combinations.

Dealing with zeros in the rating matrix by

using imputation

However, often you will encounter situations

where only 1% of the cells in the rating matrix

have values. Something needs to be done. To [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 6 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

achieve this goal, we have two common

methods:

*We can calculate the average of each element

(or user) and fill each row (or column) of this

matrix, which contains zeros, with this average.

* We normalize each row in such a way that all

components are centered around zero, so the

zeros will become the mean.

Both approaches are considred as imputation.

This solution shows you part of the way, but we

can have better performance with something

called baseline predictors, which we will

discuss soon. In the next step, we will fill the

zero cells with averages obtained (product

obtained) from the ratings.

Normalizing the ratings

Calculate the average of the movies

r_average=M[M>0.0]. mean () ⟵

Set zero for all inputs for NaN (not a number)

M[M==0] =np.NaN←

Fill all NaNs with averages M.fillna

(r_average,inplace=True)←

Adding a New User with Insertion (Folding

in New Entries)

An interesting point about the SVD method is

that we can fold in new users and items to the

system.

Expressed as a vector, it will be as follows:

𝑟𝑘𝑖𝑚 = (4.0, 5.0,0.0,3.0,3.0,0.0)

You can compute the new row using the

formula below: (Figure 7)

𝑢𝑘𝑖𝑚 = 𝑟𝑘𝑉𝑡∑−1

Where, ukim is the user vector in the reduced

space representing the new user. *rk is the

vector for rating the new user. ∑(-1) is the

inverse of the sigma matrix. VT is the item

matrix.

To use this in Python, we have executed the

following code in a sample script:

Folding in new users

𝑓𝑟𝑜𝑚 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑎𝑙𝑔 𝑖𝑚𝑝𝑜𝑟𝑡 𝑎𝑛𝑣

𝑟𝑘𝑖𝑚 = 𝑛𝑝. 𝑎𝑟𝑟𝑎𝑦([4.0,5.0,0.0,3.0,3.0,0.0])

𝑢𝑘𝑖𝑚

= 𝑟𝑘𝑖𝑚 𝑣∗ 𝑡_𝑟𝑒𝑑𝑢𝑐𝑒𝑑. 𝑇∗ 𝑖𝑛𝑣(𝑆𝑖𝑔𝑚𝑎_𝑟𝑒𝑑𝑢𝑐𝑒𝑑)

Now, we can also predict ratings for the user

"kim". Similarly, we can fold in a new item

using the following formula:

𝑖̂𝑛𝑒𝑤 = 𝑟𝑛𝑒𝑤 𝑖𝑡𝑒𝑚
𝑇 𝑈∑−1

* inew is a vector in the reduced space

representing the new item.

* r new item is the rating vector of the new

item.

*∑-1 is the inverse of the sigma matrix.

*-U is the user matrix.

Remember, this reduction is done to extract

topics from the data. When you add a new user

or item, these topics do not update; they are

compared with the discussions that were

previously available.

Updating SVD is often important as much as

possible. Depending on the number of new

users and items, you should perform this task

once a day or once a week. An interesting point

about folding in a new user is that if the new

user only has one rating, whether it is high or

low, it does not matter. The recommendation

list will remain exactly the same.

Performing Recommendations with SVD

There are two methods for providing

recommendations: calculating all predicted

ratings and considering the highest-rating items

that the user has not encountered before, or

iterating through each item and obtaining

similar dot products in the reduced space. The

third method can involve utilizing your new

matrices to compute collaborative filtering.

The reason for considering this as a good idea

is that matrices contain all non-zero inputs (at

least if normalized). In this compressed space,

you have a much better chance of finding

similar items or users.

I could continue writing about SVD and its

capabilities, but I would like to explore another

type of reduction method, similar to SVD but

much more efficient for computation. The SVD

method you have seen so far has several

drawbacks: first, dealing with unfilled cells in

the rating matrix is necessary, and computing

large matrices is slow. On the positive side,

adding new users when they enter is possible.

However, keep in mind that the SVD model is

static and should ideally be updated frequently.

The next matrix decomposition algorithm is

interesting, but as always, I will take a moment

to focus on something called baseline

predictors, which make filling in the gaps in the

matrix easier. Although they can be used as a

recommendation system, here they are used as

a method for better matrix decomposition.

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 7 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Baseline Predictors

Apart from the types of items and user

preferences, there are other aspects of items

and users that can be considered. If a movie is

generally considered good, its average rating is

likely slightly higher than the global average of

all movies, and conversely, if a movie is

considered bad, its average rating is likely

lower than the global average. If you have such

information, you can add a slightly higher

default rating to an item. However, some users

may be more important or positive compared to

others. An item that is above or below the

average can be said to be biased. The same

applies to users; you can say that users have

biases compared to the global average.

If you are able to extract these biases for items

and users, then you are in a position to provide

baseline predictors, which are much better than

using averages, as you did earlier when filling

in empty cells of the rating matrix. Using these

biases, you can create baseline predictors. A

baseline predictor is the sum of the global

average, plus the item bias, plus the user bias.

You will use the following equation:

𝑏𝑢𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖

Where,

*bu is the baseline prediction for item i for user

u.

*bu is the user bias.

*bi is the item bias.

*μ is the mean of all ratings.

Estimation of Biases by Least Squares

You want to obtain biases that represent

baseline predictions close to known ratings. If

you consider the same ratings used previously,

you will ask what values should be determined

for the biases to minimize the following

relationship as much as possible.

min (𝑟(𝑠𝑎𝑟𝑎,𝑐𝑖𝑣𝑖𝑙 𝑤𝑎𝑟) − 𝑏(𝑠𝑎𝑟𝑎,𝑐𝑖𝑣𝑖𝑙 𝑤𝑎𝑟))2

min (𝑟(𝑠𝑎𝑟𝑎,𝑐𝑖𝑣𝑖𝑙 𝑤𝑎𝑟) − 𝜇−𝑏𝑠𝑎𝑟𝑎 − 𝑏𝑐𝑖𝑣𝑖𝑙 𝑤𝑎𝑟)2

To ensure that no one is left behind, I will

quickly address this task. This equation

signifies your effort to find bs that minimizes

or least squares the equation. For multiple

ratings, it can be written as follows:

min
𝑏

∑ (𝑟(𝑢,𝑖) − 𝜇 − 𝑏𝑢 − 𝑏𝑖)
2

(𝑢,𝑖)∈𝐾

Where,

(u, i) ϵ K represents all the ratings you have had

so far.

A simpler method to find these biases is to

utilize the equations described in this section.

Initially, compute the bias for each user (bu) by

considering the sum of differences between

user ratings and the mean, then divide it by the

number of ratings, meaning the result is the

average difference between the mean and user

ratings.

𝑏𝑢 =
1

|𝐼𝑢|
∑(𝑟𝑢,𝑖 − 𝜇)

𝑖∈𝐼𝑢

After calculating all user biases, compute the

item bias (bi) using the same method.

𝑏𝑖 =
1

|𝑈𝑖|
∑ (𝑟𝑢,𝑖 − 𝑏𝑢 − 𝜇)

𝑢∈𝑈𝑖

The biases calculated can be used to fill in

empty spaces in the rating matrix, instead of

SVD, or in fact, most matrix factorization

algorithms, may perform better. I have

calculated the biases for test data.

While we talk about bias as static, a user can

range from a happy individual to a grumpy

elder, and biases should adjust to reflect that.

This applies to item bias adjustment over time

as well since items enter and exit fashions.

Predictions of ratings can also vary over time,

so you can consider your rating prediction

function as a function of time. In such cases,

you need to modify the previous equation to the

following time-dependent equation:

𝑏𝑢𝑖(𝑡) = 𝜇 + 𝑏𝑢(𝑡) + 𝑏𝑖(𝑡)

Consider this especially if you have long-term

data with numerous ratings. If you want to

improve the accuracy of your recommender,

keep this in mind.

If your data spans a long period and has many

ratings, you should pay attention to the

temporal aspects. Otherwise, start with a

simpler approach and then upgrade. You can

delve into research describing how to approach

this. A good starting point is collaborative

filtering with temporal dynamics by [10-12].

Decomposition Using Funk SVD

The SVD method puts significant weight on the

rating matrix, but this is a sparse matrix (quiet,

scattered, low density), and one should not

heavily rely on the concept that the likelihood

of finding a crowded cell with a rating can be

less than 1%. Instead of using the entire matrix, [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 8 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Simon Funk proposed a method where only the

necessary things are used.

You start this method by looking at RMSE,

which is used to provide a measure of how

close you are to the known rating. By looking

at your toolbox, you will notice something

called gradient descent, which uses RMSE to

improve the solution. When you have that, you

will pay attention to using baseline predictors.

Earlier, I referred to them as a method for better

prediction compared to average rating

information. By learning all these, you will

explore the Funk SVD algorithm.

Adding Biases

In the previous section, we discussed biases.

Even though this equation may be slightly

complex, adding them is valuable.

The approach I am considering is one where the

user prefers a specific type of movie, encoded

in the user factors, while a negative (or

positive) bias is encoded in the item factors.

Now, a predicted rating is the sum of these four

components, as shown in Figure 8.

When adding them to the equation, the new

function you want to minimize is as follows:

𝑚𝑖𝑛𝑏,𝑝,𝑞 ∑ (𝑟𝑖𝑢 − 𝜇 − 𝑏𝑢 − 𝑏𝑖 − 𝑞𝑖𝑝𝑢)2

(𝑢,𝑖)∈𝐾

You perform this according to the stochastic

gradient descent approach and by considering

the derivative of the mean squared error, you

obtain these equations.

If your rating matrix is sparse, you may

encounter issues (problems) of overfitting.

Overfitting occurs as matrices U and V can

precisely calculate appropriate values for

existing ratings, but when it comes to

predicting new cases, they completely fail. One

way to address this is by introducing something

called a regularization term, which minimizes

the following relationship:

𝑚𝑖𝑛𝑢𝑣 ∑ (𝑟𝑢𝑖 − 𝑢𝑢𝑣𝑖) + 𝜆(||𝑢||2

(𝑢,𝑖)∈𝑘𝑛𝑜𝑤𝑛

+ ||𝑣||2)

Brute Force Recommendation (Theory,

Recommendation) Calculation

The brute force recommendation is

straightforward: determine a predicted rate for

each user and item, then sort all predictions and

return the top N. While doing this, you can also

save all predictions for use when users visit

later.

This is a non-negligent (nonsense) method of

doing unnecessary work. Keep in mind that

doing this may require a lot of time and force

your system to perform many computations

that will never be used. You can optimize this

to some extent, but a better approach is to save

factors and biases and use them to calculate

recommendations.

Instead of using the original rating data, you

can use the factors you have calculated

yourself. This means you calculate similarities

where items are closer and in smaller

dimensions, making the task easier.

If you have already observed the factor space,

you can create user-based or item-based

recommendations. Either way, you will benefit

from the vectors created representing users and

items.

Results

Python Code Implemented on Data

After collecting the data, we implemented the

algorithm shown in the figure using Python.

The metrics show the closest similarities to our

input symptoms. When a patient visits a doctor

with specific symptoms, the doctor enters the

symptoms into the software we have

implemented, and ultimately the output will

show the three diseases closest to the

symptoms for predicting the disease to the

doctor. Further comparisons are made between

the metrics, and the worst metric, which has

weaker results compared to the others, is

determined. In the Appendix A, the program

execution is included, and the results are

presented for further information.

Running the Code and Disease Prediction

After preparing the data and implementing the

algorithm in Table 5, the execution of the code

for disease prediction is presented in Figure 1

in this section. Data mining is capable of

discovering and extracting new knowledge

from past data. The preprocessing of data and

the selection of variables also have a significant

impact on knowledge discovery. Various data

mining techniques exist for disease prediction.

In this article, five data mining algorithms were

used, which will be explained further. The

empirical results demonstrate the effectiveness

and reliability of all three methods compared [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 9 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

based on sensitivity, specificity, and accuracy.

Pruning and boosting techniques were

employed to find the desired structure and

improve the accuracy and validity of the

results. The examined database in this article

focused on data mining prediction approaches

in neurological diseases and their diagnosis.

Therefore, based on the notes mentioned

regarding research gaps and the use of data

mining prediction approaches in early

detection of various diseases (medical), new

research can be initiated in this field (5, 6).

Example 1.5. As an example, we examined a

sample and entered the disease symptoms in

order, including decreased level of

consciousness, confusion (B=9), neck stiffness

(D=8), and bilateral extensor plantar response

(G=6) into the software implemented with

Python. The software outputs diseases close to

this patient's condition, and the output is shown

according to various metrics. The Jaccard

metric output indicates three diseases, namely

migraine, spinocerebellar degeneration due to

Phenytoin, and vasovagal syncope. The

Minkowski metric output indicates muscular

dystrophy diseases, Duchenne muscular

dystrophy, and facioscapulohumeral muscular

dystrophy. All output diseases are close to the

input symptoms in the domain of motor

disorders, sensory impairments, motor deficits,

and visual impairments. Our software

identified the weakest metric, which indicates

weaker results compared to other metrics, as

the Pearson metric. Additionally, using the

SVD technique, the program executes in less

time. The results were reviewed with a

neurology specialist, and the examination

outcome showed that the results are entirely

acceptable and accurate.

This graph represents the evaluation of the

target algorithm. Cross-validation technique

has been employed, with K set as 40 as

depicted in Figures 11 and 12. Cross-validation

has been performed on 40 configurations, and

accuracy has been calculated. The results are

illustrated below. Upon examining the results

of matrix factorization, I believe achieving a

service coverage of up to 95% for diseases is

excellent.

One way to look at the data is to compare the

training error with the testing error, as shown

in the figure below. It is crucial for the lines to

have an angle less than or equal to 45 degrees,

indicating that the test error is proportional to

the training error. It is advisable to run the

experiment for a certain number of iterations,

such as 50 or 100 times, while some articles

suggest looking at RMSE for each iteration and

stopping when the change in RMSE is less than

a certain threshold. Plotting MSE as shown

below, it is a good idea to look for intersections

in the graph. The intersection is often where the

algorithm avoids overfitting to its known data

and starts to overfit excessively. A line in the

figure below represents training with 75

factors. As you can see, the testing MSE has a

small intersection at around 400 iterations.

Here we should only use 20 factors because the

test line with 20 factors has a small intersection

at around 275 iterations, so it might be a good

place to stop.

The return values of this function increase as

the items become more similar. The better

method depends on your domain and data. In

general, the relationship between similarity and

distance is as follows:

As the distance increases, similarity tends

towards zero.

As the distance tends towards zero, similarity

tends towards one.

In this section, we measure similarity using

different algorithms and compare their

accuracies with each other.

Conclusion

The aim of this research was to design an

efficient model for discovering knowledge in

predicting neurological diseases based on the

latest dataset of indicators in this field related

to public health and to provide an accurate

analysis of data mining techniques for

predicting neurological diseases. In other

words, research efforts have been made to

employ data mining techniques based on the

use of disease and symptom datasets through

business intelligence programs to provide

important results in accurate decision-making

and timely presentations (7,8). For

comprehensive explanations and overall

conclusions, various metrics were utilized and

the algorithm was implemented using Python

software for predicting neurological diseases.

The advantages of each of these metrics have

been elaborated upon, and the SVD technique [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 10 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

has also been employed to reduce program

execution time for disease prediction.

Acknowledgments

I extend my sincere gratitude to the esteemed

and knowledgeable professor, Dr. Mohammad

Reza Eskandari, for his assistance in data

analysis and medical sections.

Funding

None

Authors Contributions

The author contributed to the data analysis.

Drafting, revising and approving the article,

responsible for all aspects of this work.

Ethical Consideration

None

References

1. Nilashi M, Abumalloh RA, Alyami S,

Alghamdi A, Alrizq M. A Combined

Method for Diabetes Mellitus Diagnosis

Using Deep Learning, Singular Value

Decomposition, and Self-Organizing Map

Approaches. Diagnostics. 2023 May

22;13(10):1821.

2. Peng L, Huang L, Su Q, Tian G, Chen M,

Han G. LDA-VGHB: identifying potential

lncRNA–disease associations with singular

value decomposition, variational graph

auto-encoder and heterogeneous Newton

boosting machine. Briefings in

Bioinformatics. 2024 Jan 1;25(1):bbad466.

3. Sheng N, Huang L, Lu Y, Wang H, Yang

L, Gao L, Xie X, Fu Y, Wang Y. Data

resources and computational methods for

lncRNA-disease association prediction.

Computers in Biology and Medicine. 2023

Feb 1;153:106527.

4. Michael J, Aminoff Md DSc FRCP, S.

2021.Andrew Josephson S.Aminoff’s

Neurology and General Medicine. 6th ed.

Academic Press :1230.

5. zacharski R. 2021.A prorammers Gui to

Data Mining: the ancient Art of the

Numeriati. 395.

6. Falk K. 2019.Practical Recommender

Systems.1st ed.USA, 432.

7. Yang HF, Phoebe Chen YF. 2015.Data

mining in lung cancer pathologic staging

diagnosis: Correlation between clinical and

pathology information. 42(15-16): 6168-

6176.

8. Yi Yeh J, His Wu T, Wei Tsao CH.

2011.Using data mining techniques to

predict hospitalization of hemodialysis

patients .50(2):448-439.

9. Sornalakshmi, M., Devakanth, J. J. M. A.,

Rajalakshmi, R., & Velmurugadass, P.

(2023). An energy-aware heart disease

prediction system using ESMO and optimal

deep learning model for healthcare

monitoring in IoT. Journal of Biomolecular

Structure and Dynamics, 1-15.

10. Junior SB, Guido RC, Aguiar GJ, Santana

EJ, Junior ML, Patil HA. Multiple voice

disorders in the same individual:

investigating handcrafted features, multi-

label classification algorithms, and base-

learners. Speech Communication. 2023 Jul

1;152:102952.

11. Zhang Y, Xiang J, Tang L, Yang J, Li J.

PGAGP: Predicting pathogenic genes

based on adaptive network embedding

algorithm. Frontiers in Genetics. 2023 Jan

20;13:1087784.

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 11 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Tables & Figures

Table 1: Intensity of symptoms

Disease Symptoms (Headache)

Subarachnoid hemorrhage 10

Meningitis or encephalitis 9

Intracranial hypertension (encephalopathy) 9

Giant cell arteritis 9

Intracranial mass 8

Pseudotumor cerebri (idiopathic intracranial hypertension) 9

Trigeminal neuralgia 0

Glossopharyngeal neuralgia 0

Postherpetic neuralgia 0

Hypertension 9

Table 2: Symptoms B (5) (Decreased level of consciousness, confusion)

Diseases Symptoms (Decreased level

of consciousness, confusion)

Subarachnoid hemorrhage 9

Meningitis or encephalitis 9

Intracranial hypertension (encephalopathy) 0

Giant cell arteritis 0

Intracranial mass 7

Pseudotumor cerebri (idiopathic intracranial hypertension) 0

Trigeminal neuralgia 0

Glossopharyngeal neuralgia 0

Postherpetic neuralgia 0

Hypertension 0

Table 3: Some symptoms extracted from Aminoff’s book and consultation with a specialist

physician (4).

Code Symptoms Code Symptoms

A Headache G Plantar reflex (bilateral extensor or Babinski

reflex)

B Decreased level of

consciousness (confusion)

H Hemiparesis (paralysis of one limb or one side

of the body)

C Vomiting I Aphasia (speech disturbance)

D Stiff neck J Visual field defects or visual changes

E High blood pressure K Herniation

F Fever L Progressive drowsiness

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 12 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Table 4: Some of the diseases extracted from Aminoff's book and consultation with a specialist

physician (4).

1) Subarachnoid hemorrhage

2) Meningitis or encephalitis

3) Hypertensive encephalopathy

4) Giant cell arteritis

5) Intracranial mass

6) Pseudotumor cerebri (Idiopathic intracranial hypertension)

7) Trigeminal neuralgia

8) Glossopharyngeal neuralgia

9) Postherpetic neuralgia

10) Hypertension

11) Atypical facial pain

12) Migraine

13) Cluster headache

14) Tension-type headache

15) Ice pick headache

Figure 1. Standard deviation data

Figure 2. Mean data

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 13 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Figure 3. Check the median data and the standard deviation data and the mean data

Figure 4 .depicts a scatter plot of noisy data points (upper) and signals that reveal the information

present in the data (lower).

Figure 5: Singular Value Decomposition procedure

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 14 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Figure 6. SVD reduction to zero by setting small values in Σ.

Figure 7. Graphs illustrating the technique of folding in (folding in new items) using SVD

Detailed Program

𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑒𝑎𝑛 = 𝑀[𝑀 > 0]. 𝑚𝑒𝑎𝑛(⬚). 𝑚𝑒𝑎𝑛(⬚)

𝑀_𝑚𝑖𝑛𝑢𝑠_𝑚𝑒𝑎𝑛 = 𝑀[𝑀 > 0] − 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑒𝑎𝑛

𝑢𝑠𝑒𝑟_𝑏𝑖𝑎𝑠 = 𝑀_𝑚𝑖𝑛𝑢𝑠_𝑚𝑒𝑎𝑛. 𝑇. 𝑚𝑒𝑎𝑛(⬚)

𝑖𝑡𝑒𝑚_𝑏𝑖𝑎𝑠 = 𝑀_𝑚𝑖𝑛𝑢𝑠_𝑚𝑒𝑎𝑛. 𝑎𝑝𝑝𝑙𝑦(𝑙𝑎𝑚𝑏𝑑𝑎 𝑟: 𝑟 − 𝑢𝑠𝑒𝑟_𝑏𝑖𝑎𝑠). 𝑚𝑒𝑎𝑛(⬚)

Obtaining the global mean, which can be done initially

by obtaining the mean of each column and then finding

the mean of those means.
Subtracting the global mean from all non-zero

ratings.

The mean of each row is equal to the user

bias.

Subtracting the user bias from each row, then

considering the mean of each column gives

you the item bias.

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 15 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Temporal Dynamics

Figure 8. A predicted rating is a combination of these four elements.

MSE Test

Figure 9. Compares the MSE test with the training MSE to indicate whether over fitting occurs or not.

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 16 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Figure 10: Execution of Python Code for Disease Prediction and Interpretation of Results in Example

1.5

Figure 11. Similarity check diagram using svd

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 17 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

Figure 12. Similarity check diagram using data mining techniques

Appendix A: Code

from math import sqrt

import pandas as pd

from numpy import dot

from collections import Counter

from itertools import chain

from numpy import linalg

import numpy as np

from scipy.linalg import svd

def jaccard_similarity(arr1, arr2):

intersection = len(list(set(arr1).intersection(arr2)))

 union = (len(set(arr1)) + len(set(arr2))) – intersection

return float(intersection) / union

def l1_norm(arr):

return sum([abs(i) for i in arr])

def l2_norm(arr):

return sqrt(sum([pow(i, 2) for i in arr]))

def cosine_similarity_l1(arr1, arr2):

 return dot(arr1, arr2) / (l1_norm(arr1) * l1_norm(arr2))

def cosine_similarity_l2(arr1, arr2):

 return dot(arr1, arr2) / (l2_norm(arr1) * l2_norm(arr2))

def recommend(df, disease_name):

 distance_type = input 'Distance Type (1: Jaccard similarity, 2: Cosine similarity l1-norm, 3:

Cosine similarity l2-norm): ')

do_compare = input('Do you want to compare distances? (y (yes), n (no)): ')

 distance = []

 distances = []

 for i in range(df.shape[0]):

 if i != disease_name: distance.append(jaccard_similarity(df.iloc[disease_name].values,

df.iloc[i].values))

 distances.append(distance)

 distance = []

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 18 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

 for i in range(df.shape[0]):

 if i != disease_name:

 distance.append(cosine_similarity_l1(df.iloc[disease_name].values, df.iloc[i].values))

 distances.append(distance)

 distance = []

 for i in range(df.shape[0]):

 if i != disease_name:

 distance.append(cosine_similarity_l2(df.iloc[disease_name].values, df.iloc[i].values))

 distances.append(distance)

 if distance_type == '1':

 print('Jaccard similarity (top 3): ', numpy.argsort(distances[0])[0:3], sorted(distances[0])[0:3])

 if distance_type == '2':

 print('Cosine similarity l1-norm (top 3): ', numpy.argsort(distances[1])[0:3],

sorted(distances[1])[0:3])

 if distance_type == '3':

 print('Cosine similarity l2-norm (top 3): ', numpy.argsort(distances[2])[0:3],

sorted(distances[2])[0:3])

 if do_compare == 'y':

 print('Jaccard similarity (top 3): ', numpy.argsort(distances[0])[0:3], sorted(distances[0])[0:3])

 print('Cosine similarity l1-norm (top 3): ', numpy.argsort(distances[1])[0:3],

sorted(distances[1])[0:3])

 print('Cosine similarity l2-norm (top 3): ', numpy.argsort(distances[2])[0:3],

sorted(distances[2])[0:3])

 counts = Counter(chain(*map(set,

 [sorted(distances[0])[0:3], sorted(distances[1])[0:3],

sorted(distances[2])[0:3]])))

common_remove = [[i for i in sublist if counts[i] == 1] for sublist in [sorted(distances[0])[0:3],

sorted(distances[1])[0:3], sorted(distances[2])[0:3]]]

 list_size = []

 for i in range(len(common_remove)):

 list_size.append(len(common_remove[i]))

 max_size_list = list_size.index(max(list_size))

 if max_size_list == 0:

 print('\n' + 'Worst distance calculation is Jaccard similarity')

 if max_size_list == 1:

 print('\n' + 'Worst distance calculation is Cosine similarity l1-norm')

 if max_size_list == 2:

 print('\n' + 'Worst distance calculation is Cosine similarity l2-norm')

disease_name = 100

dfs = pd.read_excel('Future_Signs_final(1).xlsx', header=None)

first_row = dfs.iloc[0, 1:]

first_column = dfs.iloc[1:, 0]

first_row.to_excel("features.xlsx", sheet_name='Sheet1')

first_column.to_excel("disease_names.xlsx", sheet_name='Sheet1')

df = dfs.iloc[1:, 1:]

X= dfs.iloc[1:,1:].values

Y = X.astype('float64')

SVD

U, Sigma, Vt = svd(Y)

#print(U)

#print(Sigma)

#print(Vt) [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 19 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

reducing the matrix

def rank_k(k):

 U_reduced= np.mat(U[:,:k])

 Vt_reduced= np.mat(Vt[:k,:])

 Sigma_reduced= np.eye(k)*Sigma[:k]

 return U_reduced, Sigma_reduced, Vt_reduced,

U_reduced, Sigma_reduced, Vt_reduced= rank_k(4)

Y_hat = U_reduced * Sigma_reduced * Vt_reduced

#Predict a rating

Y_hat_matrix = pd.DataFrame(Y_hat).round(2)

#Reducing the matrix

def rank_k2(k):

 U_reduced= np.mat(U[:,:k])

 Vt_reduced = np.mat(Vt[:k,:])

 Sigma_reduced = Sigma_reduced = np.eye(k)*Sigma[:k]

 Sigma_sqrt = np.sqrt(Sigma_reduced)

 return U_reduced*Sigma_sqrt, Sigma_sqrt*Vt_reduced

U_reduced, Vt_reduced = rank_k2(4)

Y_hat2 = U_reduced * Vt_reduced

def meta_parameter_train(self, ratings_df):

 for k in [5, 10, 15, 20, 30, 40, 50, 75, 100]:

 self.initialize_factors(ratings_df, k)

 test_data, train_data = self.split_data(10, ratings_df)

 columns = df.columns

 ratings = train_data[columns].as_matrix()

 test = test_data[columns].as_matrix()

 self.MAX_ITERATIONS = 100

 iterations = 0

 index_randomized = random.sample(range(0, len(ratings)),(len(ratings) - 1))

 for factor in range(k):

 factor_iteration = 0

 last_err = 0

 iteration_err = sys.maxsize

 finished = False

 while not finished:

 train_mse = self.stocastic_gradient_descent(factor,index_randomized,ratings)

 iterations += 1

 finished = self.finished(factor_iteration,last_err,iteration_err)

 last_err = iteration_err

 factor_iteration += 1

 test_mse = self.calculate_mse(test, factor)

def initialize_factors(self, ratings, k=25):

 self.disease_name = set(ratings['disease_name'].values)

 self.features = set(ratings['features'].values)

 self.u_inx = {r: i for i, r in enumerate(self.disease_name)}

 self.i_inx = {r: i for i, r in enumerate(self.features)}

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 20 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

 self.distance_factors = np.full((len(self.i_inx), k), 0.1)

 self.disease_name_factors = np.full((len(self.u_inx), k), 0.1)

 self.all_features_mean = self.calculate_all_features_mean(ratings)

 self.disease_name_bias = defaultdict(lambda: 0)

 self.distance_bias = defaultdict(lambda: 0)

def predict(self, disease_name, distance):

 avg = self.all_features_mean

 pq = np.dot(self.distance_factors[distance],self.disease_name_factors[disease_name].T)

 b_ui = avg + self.disease_name_bias[disease_name] + self.distance_bias[distance]

 prediction = b_ui + pq

 if prediction > 10:

 prediction = 10

 elif prediction < 1:

 prediction = 1

 return prediction

def train(self, ratings_df, k=20):

 self.initialize_factors(ratings_df, k)

 ratings = ratings_df[['disease_name_id', 'features_id', 'rate']].as_matrix()

 index_randomized = random.sample(range(0, len(ratings)),(len(ratings) - 1))

 for factor in range(k):

 iterations = 0

 last_err = 0

 iteration_err = sys.maxsize

 finished = False

 while not finished:

 start_time = datetime.now()

 iteration_err = self.stocastic_gradient_descent(factor,index_randomized,ratings)

 iterations += 1

 finished = self.finished(iterations,last_err,iteration_err)

 last_err = iteration_err

 self.save(factor, finished)

def finished(self, iterations, last_err, current_err):

 if iterations >= 100 or last_err < current_err:

 print('Finish w iterations: {}, last_err: {}, current_err {}'.format(iterations, last_err, current_err))

 return True

 else:

 self.iterations +=1

 return False

 def save(self):

 print("saving factors")

 with open('disease_name_factors.json', 'w') as outfile:

 json.dump(self.disease_name_factors, outfile)

 with open('distance_factors.json', 'w') as outfile:

 json.dump(self.distance_factors, outfile)

 with open('disease_name_bias.json', 'w') as outfile:

 json.dump(self.disease_name_bias, outfile)

 with open('distance_bias.json', 'w') as outfile:

 json.dump(self.distance_bias, outfile)

def recommend_distance_by_ratings(self, disease_name_id, active_disease_name_distance, num=6):

 rated_features = set(active_disease_name_distance.values('disease_name_id'))

 disease_name = self.disease_name_factors.loc[disease_name_id]

 scores = self.distance_factors.dot(disease_name) [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

 21 / 22

https://intjmi.com/article-1-1210-en.html

 Int J Med Invest 2024; Volume 13; Number 4; 106-127 http://intjmi.com

 scores.sort_values(inplace=True, ascending=False)

 result = scores[:num + len(rated_disease_name)]

 recs = r[1] + self.disease_name_bias[disease_name_id] + self.distance_bias[r[0]]

 sorted_distance = sorted(recs.distance(),key=lambda distance:-

float(distance[1]['prediction']))[:num]

 return sorted_distance

show_type = input(

 'Choose: 1: Input NoN-Zero Features From User, 2: Input Features From File, 3: Input all Features

From user ')

if show_type == '1':

 how_many_number = int(input("How many non-zero Features do you have? "))

 print("Enter two values for %d times: First is the Feature Index (from 1 to %d) and Second is the

Feature Value" % (

 how_many_number, (len(df.columns))))

 df.iloc[disease_name][1:len(df)] = 0

 for i in range(how_many_number):

 index, df.iloc[disease_name][index] = [int(x) for x in input().split()]

 recommend(df, int(disease_name))

 if show_type == '2':

 disease_name = input('Enter the Number of the disease: ')

 recommend(df, int(disease_name))

 #u, sigma, vt = linalg.svd(df)

if show_type == '3':

 print("Enter %d Feature Values" % (len(df.columns)))

 for i in range(len(df.columns)):

 df.iloc[disease_name][i] = input()

 recommend(df, int(disease_name))

 [
 D

ow
nl

oa
de

d
fr

om
 in

tjm
i.c

om
 o

n
20

26
-0

2-
14

]

Powered by TCPDF (www.tcpdf.org)

 22 / 22

https://intjmi.com/article-1-1210-en.html
http://www.tcpdf.org

