:: Volume 9, Issue 1 (3-2020) ::
Int J Med Invest 2020, 9(1): 29-35 Back to browse issues page
Detection of aacc1 and aacc2 Genes in Clinical Isolates of Klebsiella Pneumoniae
Fatemeh Bahrami Chegeni *, Kourosh Cheraghipour, Pegah Shakib
Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
Abstract:   (1316 Views)
Introduction: Klebsiella pneumoniae is one of the main agent of nosocomial infections. Reports around the world emphasize on the resistance to aminoglycoside antibiotics in recent years. The purpose of this study is to determine the frequency of aacC1 and aacC2 genes in clinical isolates of Klebsiella pneumoniae.
Methods: A total of 100 Klebsiella   pneumoniae were collected from tertiary university hospitals, Khorramabad city, Iran, from February to August 2018. The obtained samples were identified by standard biochemical and microbiological tests. Susceptibility pattern of isolates were determined according to Clinical Laboratory Standards Institute (CLSI) advices using disk diffusion method. After DNA extraction, all Klebsiella   pneumoniae isolates were evaluated for the presence of aacC1 and aacC2 genes using PCR assay.
Findings: Out Of 100 Klebsiella pneumonia isolates the highest resistance was related to kanamycin (35%), tobramycin (29%), and amikacin (23%). The aacC1 and aacC2 genes was detected in 22.8 and17.2 percent, respectively.
Conclusion: Our results indicate that the prevalence of the aacC1 and aacC2 genes was high and it is clear that we witness an increase in resistance to antibiotics in clinical isolates. Therefore, we expect an increase in the resistance to aminoglycoside antibiotics in the near future.
Keywords: Klebsiella pneumoniae, PCR assay, aacC1, aacC2.
Full-Text [PDF 617 kb]   (318 Downloads)    
Type of Study: Research | Subject: General
1. 1. Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future microbiology. 2014;9(9):1071-81. 2. Pomakova D, Hsiao C, Beanan J, Olson R, MacDonald U, Keynan Y, et al. Clinical and phenotypic differences between classic and hypervirulent Klebsiella pneumonia: an emerging and under-recognized pathogenic variant. European journal of clinical microbiology & infectious diseases. 2012;31(6):981-9. 3. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infection Control & Hospital Epidemiology. 2008;29(12):1099-106. 4. Chen L, Todd R, Kiehlbauch J, Walters M, Kallen A. Notes from the Field: Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae-Washoe County, Nevada, 2016. MMWR Morbidity and mortality weekly report. 2017;66(1):33-. 5. Eisen D, Russell EG, Tymms M, Roper EJ, Grayson ML, Turnidge J. Random amplified polymorphic DNA and plasmid analyses used in investigation of an outbreak of multiresistant Klebsiella pneumoniae. Journal of clinical microbiology. 1995;33(3):713-7. 6. Giannella M, Bartoletti M, Morelli M, Tedeschi S, Cristini F, Tumietto F, et al. Risk factors for infection with carbapenem‐resistant Klebsiella pneumoniae after liver transplantation: the importance of pre‐and posttransplant colonization. American Journal of Transplantation. 2015;15(6):1708-15. 7. Lindemann PC, Risberg K, Wiker HG, Mylvaganam H. Aminoglycoside resistance in clinical Escherichia coli and Klebsiella pneumoniae isolates from Western Norway. Apmis. 2012;120(6):495-502. 8. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007;128(6):1037-50. 9. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nature reviews microbiology. 2015;13(1):42. 10. El-Badawy MF, Tawakol WM, El-Far SW, Maghrabi IA, Al-Ghamdi SA, Mansy MS, et al. Molecular identification of aminoglycoside-modifying enzymes and plasmid-mediated quinolone resistance genes among Klebsiella pneumoniae clinical isolates recovered from Egyptian patients. International journal of microbiology. 2017;2017. 11. Shakya T, Wright GD. Mechanisms of aminoglycoside antibiotic resistance. Aminoglycoside Antibiotics. 2007:119-40. 12. Ramirez MS, Nikolaidis N, Tolmasky M. Rise and dissemination of aminoglycoside resistance: the aac (6′)-Ib paradigm. Frontiers in microbiology. 2013;4:121. 13. Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, et al. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. Journal of clinical microbiology. 2004;42(12):5444-52. 14. Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. MedChemComm. 2016;7(1):11-27. 15. Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology-e-book: Elsevier Health Sciences; 2014. 16. Wayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011. 17. Sáenz Y, Brinas L, Domínguez E, Ruiz J, Zarazaga M, Vila J, et al. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrobial agents and chemotherapy. 2004;48(10):3996-4001. 18. Woodford N, Tierno PM, Young K, Tysall L, Palepou M-FI, Ward E, et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York medical center. Antimicrobial agents and chemotherapy. 2004;48(12):4793-9. 19. Yao X, Doi Y, Zeng L, Lv L, Liu J-H. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. The Lancet infectious diseases. 2016;16(3):288-9. 20. Ben‐David D, Kordevani R, Keller N, Tal I, Marzel A, Gal‐Mor O, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clinical Microbiology and Infection. 2012;18(1):54-60. 21. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences. 2015;112(27):E3574-E81. 22. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. The Lancet infectious diseases. 2013;13(9):785-96. 23. Mehrgan H, Rahbar M, Arab-Halvaii Z. High prevalence of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a tertiary care hospital in Tehran, Iran. The Journal of infection in developing countries. 2010;4(03):132-8. 24. Waiwarawooth J, Jutiworakul K, Joraka W. The prevalence and susceptibility patterns of ESBL-producing Klebsiella pneumoniae and Escherichia coli in Chonburi hospital. Journal of Infectious Diseases and Antimicrobial Agents. 2006;23(2):57-65. 25. Chong Y, Yakushiji H, Ito Y, Kamimura T. Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. European journal of clinical microbiology & infectious diseases. 2011;30(1):83-7. 26. Liang C, Xing B, Yang X, Fu Y, Feng Y, Zhang Y. Molecular epidemiology of aminoglycosides resistance on Klebsiella pneumonia in a hospital in China. International journal of clinical and experimental medicine. 2015;8(1);1381. 27. Haldorsen BC, Simonsen GS, Sundsfjord A, Samuelsen Ø. Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and Klebsiella spp. in Norway is associated with the acquisition of AAC (3)-II and AAC (6′)-Ib. Diagnostic microbiology and infectious disease. 2014;78(1):66-9. 28. Al-Marzooq F, Yusof MYM, Tay ST. Molecular analysis of antibiotic resistance determinants and plasmids in Malaysian isolates of multidrug resistant Klebsiella pneumoniae. PloS one 2015;10(7):e0133654. 29. Abo-State MAM, Saleh YE-S, Ghareeb HM. Prevalence and sequence of aminoglycosides modifying enzymes genes among E. coli and Klebsiella species isolated from Egyptian hospitals. Journal of radiation research and applied sciences.2018;11(4):408-15.

XML     Print

Volume 9, Issue 1 (3-2020) Back to browse issues page