1. 1. De Rienzo MD, Stevenson P, Marchant R, Banat I. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Applied microbiology and biotechnology. 2016;100(13):5773-9.
2. Rivardo F, Turner R, Allegrone G, Ceri H, Martinotti M. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Applied microbiology and biotechnology. 2009;83(3):541-53.
3. Yan X, Gu S, Cui X, Shi Y, Wen S, Chen H, et al. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial pathogenesis. 2019;127:12-20.
4. Puah SM, Tan JAMA, Chew CH, Chua KH. Diverse Profiles of Biofilm and Adhesion Genes in Staphylococcus Aureus Food Strains Isolated from Sushi and Sashimi. Journal of food science. 2018;83(9):2337-42.
5. Branda SS, Vik Å, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends in microbiology. 2005;13(1):20-6.
6. Engel JB, Heckler C, Tondo EC, Daroit DJ, da Silva Malheiros P. Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. International journal of food microbiology. 2017;252:18-23.
7. Sivaranjani M, Gowrishankar S, Kamaladevi A, Pandian SK, Balamurugan K, Ravi AV. Morin inhibits biofilm production and reduces the virulence of Listeria monocytogenes—An in vitro and in vivo approach. International journal of food microbiology. 2016;237:73-82.
8. Speranza B, Corbo MR, Sinigaglia M. Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation. Journal of food science. 2011;76(1):M12-M6.
9. Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens. 2008;4(4):e1000052.
10. Miao J, Lin S, Soteyome T, Peters BM, Li Y, Chen H, et al. Biofilm Formation of Staphylococcus aureus under Food Heat Processing Conditions: First Report on CML Production within Biofilm. Scientific reports. 2019;9(1):1312.
11. Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual review of medicine. 2013;64:175-88.
12. Aghamali M, Rezaee MA, Taghizadeh S, Aghazadeh M, Hasani A, Rahbar M, et al. Evaluation of two novel biofilm-specific antibiotic resistance genes in clinical Pseudomonas aeruginosa isolates. Gene Reports. 2018;13:99-103.
13. Bai J-R, Zhong K, Wu Y-P, Elena G, Gao H. Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control. 2019;95:327-33.
14. Kim N-N, Kim WJ, Kang S-S. Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control. 2019;98:274-80.
15. Penesyan A, Gillings M, Paulsen I. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules. 2015;20(4):5286-98.
16. Albano M, Crulhas BP, Alves FCB, Pereira AFM, Andrade BFMT, Barbosa LN, et al. Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis. Microbial pathogenesis. 2019;126:231-8.
17. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology. 2016;14(9):563.
18. Hall CW, Hinz AJ, Gagnon LB-P, Zhang L, Nadeau J-P, Copeland S, et al. Pseudomonas aeruginosa biofilm antibiotic resistance gene ndvB expression requires the RpoS stationary-phase sigma factor. Appl Environ Microbiol. 2018;84(7):e02762-17.
19. Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE. Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology. 2017;307(8):481-9.
20. Bai J-R, Wu Y-P, Elena G, Zhong K, Gao H. Insight into the effect of quinic acid on biofilm formed by Staphylococcus aureus. RSC Advances. 2019;9(7):3938-45.
21. Shi X, Zhu X. Biofilm formation and food safety in food industries. Trends in Food Science & Technology. 2009;20(9):407-13.
22. Stepanović S, Ćirković I, Ranin L, S✓ vabić‐Vlahović M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in applied microbiology. 2004;38(5):428-32.
23. Al-Shabib NA, Husain FM, Ahmad I, Khan MS, Khan RA, Khan JM. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food control. 2017;79:325-32.
24. Silva DA, Camargo AC, Todorov SD, Nero LA. Listeria spp. contamination in a butcher shop environment and Listeria monocytogenes adhesion ability and sensitivity to food‐contact surface sanitizers. Journal of Food Safety. 2017;37(2):e12313.
25. da Silva Meira QG, de Medeiros Barbosa I, Athayde AJAA, de Siqueira-Júnior JP, de Souza EL. Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control. 2012;25(2):469-75.
26. Wu Y-P, Bai J-R, Grosu E, Zhong K, Liu L-J, Tang M-M, et al. Inhibitory Effect of 2R, 3R-Dihydromyricetin on Biofilm Formation by Staphylococcus aureus. Foodborne pathogens and disease. 2018;15(8):475-80.
27. Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard J-C, Naitali M, Briandet R. Biofilm-associated persistence of food-borne pathogens. Food microbiology. 2015;45:167-78.
28. Liu M, Wu X, Li J, Liu L, Zhang R, Shao D, et al. The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control. 2017;73:613-8.
29. Tango CN, Hong SS, Wang J, Oh DH. Assessment of enterotoxin production and cross‐contamination of Staphylococcus aureus between food processing materials and ready‐to‐eat cooked fish paste. Journal of food science. 2015;80(12):M2911-M6.
30. Lee SHI, Cappato LP, Corassin CH, Cruz AGd, Oliveira CAFd. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. Journal of dairy science. 2016;99(3):2384-90.
31. Luís Â, Silva F, Sousa S, Duarte AP, Domingues F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling. 2014;30(1):69-79.
32. Miao J, Liang Y, Chen L, Wang W, Wang J, Li B, et al. Formation and development of Staphylococcus biofilm: with focus on food safety. Journal of food safety. 2017;37(4):e12358.
33. Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Molecular microbiology. 2017;104(3):365-76.
34. Di Ciccio P, Vergara A, Festino A, Paludi D, Zanardi E, Ghidini S, et al. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control. 2015;50:930-6.
35. Giaouris E, Chorianopoulos N, Nychas G-J. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica Enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. Journal of food protection. 2005;68(10):2149-54.
36. Tango CN, Akkermans S, Hussain MS, Khan I, Van Impe J, Jin Y-G, et al. Modeling the effect of pH, water activity, and ethanol concentration on biofilm formation of Staphylococcus aureus. Food microbiology. 2018;76:287-95.
37. Ganchev I. Biofilm Formation Between Bacillus Subtilis and Escherichia Coli K-12 Strains at Acidic and Oxidative Stress. Science. 2019;7(1):15-8.
38. Planchon S, Gaillard-Martinie B, Dordet-Frisoni E, Bellon-Fontaine M, Leroy S, Labadie J, et al. Formation of biofilm by Staphylococcus xylosus. International journal of food microbiology. 2006;109(1-2):88-96.
39. Fakruddin M, Mazumder RM, Mannan KSB. Predictive microbiology: modeling microbial responses in food. Ceylon Journal of Science (Bio Sci). 2011;40(2):121-31.
40. Alghooneh A, Behbahani BA, Noorbakhsh H, Yazdi FT. Application of intelligent modeling to predict the population dynamics of Pseudomonas aeruginosa in Frankfurter sausage containing Satureja bachtiarica extracts. Microbial pathogenesis. 2015;85:58-65.
41. Oliveira V, Sousa V, Dias-Ferreira C. Artificial neural network modelling of the amount of separately-collected household packaging waste. Journal of cleaner production. 2019;210:401-9.
42. Bellmann S, Krishnan S, de Graaf A, de Ligt RA, Pasman WJ, Minekus M, et al. Appetite ratings of foods are predictable with an in vitro advanced gastrointestinal model in combination with an in silico artificial neural network. Food Research International. 2019.
43. Vaezi SS, Poorazizi E, Tahmourespour A, Aminsharei F. Application of artificial neural networks to describe the combined effect of pH, time, NaCl and ethanol concentrations on the biofilm formation of Staphylococcus aureus. Microbial Pathogenesis. 2020;141:103986.
44. Trigo-Gutierrez JK, Sanitá PV, Tedesco AC, Pavarina AC, de Oliveira Mima EG. Effect of Chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm. Photodiagnosis and photodynamic therapy. 2018;24:212-9.
45. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods. 2000;40(2):175-9.
46. Dimakopoulou-Papazoglou D, Lianou A, Koutsoumanis KP. Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity. Food microbiology. 2016;53:76-81.
47. Fan M, Hu J, Cao R, Ruan W, Wei X. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere. 2018;200:330-43.
48. Antwi P, Zhang D, Luo W, wen Xiao L, Meng J, Kabutey FT, et al. Performance, microbial community evolution and neural network modeling of single-stage nitrogen removal by partial-nitritation/anammox process. Bioresource technology. 2019;284:359-72.
49. Giaouris E, Heir E, Hébraud M, Chorianopoulos N, Langsrud S, Møretrø T, et al. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science. 2014;97(3):298-309.
50. de Jesus Pimentel-Filho N, de Freitas Martins MC, Nogueira GB, Mantovani HC, Vanetti MCD. Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion. International journal of food microbiology. 2014;190:1-8.
51. Gounadaki AS, Skandamis PN, Drosinos EH, Nychas G-JE. Microbial ecology of food contact surfaces and products of small-scale facilities producing traditional sausages. Food Microbiology. 2008;25(2):313-23.
52. Gutiérrez D, Delgado S, Vázquez-Sánchez D, Martínez B, Cabo ML, Rodríguez A, et al. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl Environ Microbiol. 2012;78(24):8547-54.
53. Chaieb K, Chehab O, Zmantar T, Rouabhia M, Mahdouani K, Bakhrouf A. In vitro effect of pH and ethanol on biofilm formation by clinicalica-positiveStaphylococcus epidermidis strains. Annals of microbiology. 2007;57(3):431-7.
54. Møretrø T, Hermansen L, Holck AL, Sidhu MS, Rudi K, Langsrud S. Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Appl Environ Microbiol. 2003;69(9):5648-55.
55. Kote A, Wadkar D. Modeling of Chlorine and Coagulant Dose in a Water Treatment Plant by Artificial Neural Networks. Engineering, Technology & Applied Science Research. 2019;9(3):4176-81.
56. Mittal G, Zhang J. Prediction of temperature and moisture content of frankfurters during thermal processing using neural network. Meat Science. 2000;55(1):13-24.
57. Idris MA, Jami MS, Hammed AM. Optimization process of moringa oleifera seed extract using artificial neural network (ANN). Malaysian Journal of Fundamental and Applied Sciences. 2019;15(2):254-9.
58. Movagharnejad K, Nikzad M. Modeling of tomato drying using artificial neural network. Computers and electronics in agriculture. 2007;59(1-2):78-85.
59. Herv's C, Zurera G, Garcfa R, Martínez J. Optimization of computational neural network for its application in the prediction of microbial growth in foods. Food science and technology international. 2001;7(2):159-63.
60. Najjar YM, Basheer IA, Hajmeer MN. Computational neural networks for predictive microbiology: I. Methodology. International Journal of Food Microbiology. 1997;34(1):27-49.
61. Lou W, Nakai S. Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity. Food Research International. 2001;34(7):573-9.
62. Palanichamy A, Jayas DS, Holley RA. Predicting survival of Escherichia coli O157: H7 in dry fermented sausage using artificial neural networks. Journal of food protection. 2008;71(1):6-12.
63. Tanaka F, Morita K, Nishida M, Shinto S, editors. Application of artificial neural networks for predicting the thermal inactivation of Salmonella sp. and Listeria inoccua. 2002 ASAE (The Society for Engineering in Agricultural, food, and Biological Systems) International Meeting/CIGR XVth World Congress Chicago, USA July; 2002.
64. Hajmeer MN, Basheer IA, Najjar YM. Computational neural networks for predictive microbiology II. Application to microbial growth. International journal of food microbiology. 1997;34(1):51-66.