1. 1. WHO, Coronavirus (COVID-19) Dashboard, Available at: https://covid19.who.int/.
2. J.W.M. Chan, C.K. Ng, Y.H. Chan, T.Y.W. Mok, S. Lee, S.Y.Y. Chu, et al., Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS), Thorax 58 (8) (2003 Aug) 686–689.
3. J. Bedford, D. Enria, J. Giesecke, et al., COVID-19: towards controlling of a pandemic, Lancet 395 (2020) 1015–1018, https://doi.org/10.1016/S0140-6736 (20)30673-5.
4. Yilmaz, R. Sabirli, M. Seyit, et al., Association between laboratory parameters and CT severity in patients infected with COVID-19: a retrospective, observational study, Am. J. Emerg. Med. 42 (2021) 110–114.
5. N. García-Tard´on, A.P. Abbes, A. Gerrits, R.J. Slingerland, G. den Besten, Laboratory parameters as predictors of mortality in COVID-19 patients on hospital admission, J Lab Med 44 (2020) 357–359.
6. J.D. Pierce, S. McCabe, N. White, R.L. Clancy, Biomarkers: an important clinical assessment tool, Am. J. Nurs. 112 (9) (2012) 52–58 Sep.
7. J. Gong, H. Dong, S.Q. Xia, Y.Z. Huang, D. Wang, Y. Zhao, et al.,
Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia. medRxiv, (2020 Feb 27) 2020.02.25.20025643.
8. Pasquali, E. Trabetti, M.G. Romanelli, et al., Detection of a large deletion in the P-selectin (SELP) gene, Mol. Cell. Probes 24 (2010) 161–165.
9. S. Sun, X. Cai, H. Wang, et al., Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China, Clin. Chim. Acta 507 (2020) 174–180, https:// doi.org/10.1016/j.cca.2020.04.024.
10. T.N. Mayadas, R.C. Johnson, H. Rayburn, R.O. Hynes, D.D. Wagner, Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice, Cell 74 (1993) 541–554.
11. Tuaillon, E.; Bollore, K.; Pisoni, A.; Debiesse, S.; Renault, C.;Marie, S.; Groc, S.; Niels, C.; Pansu, N.; Dupuy, A. M.; Morquin, D.;Foulongne, V.; Bourdin, A.; Le Moing, V.; Van de Perre, P. Detection of SARS-CoV-2 antibodies using commercial assays and seroconversion patterns in hospitalized patients. J. Infect. 2020, DOI: 10.1016/j.jinf.2020.05.077.
12. T.N. Mayadas, R.C. Johnson, H. Rayburn, R.O. Hynes, D.D. Wagner, Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice, Cell 74 (1993) 541–554.
13. C. Venter, J.A. Bezuidenhout, G.J. Laubscher, et al., Erythrocyte, platelet, serum ferritin, and P-selectin pathophysiology implicated in severe hypercoagulation and vascular complications in COVID-19, Int. J. Mol. Sci. 21 (2020) 8234. Nov 3.
14. G. Goshua, A.B. Pine, M.L. Meizlish, et al., Endotheliopathy in COVID-19- associated coagulopathy: evidencefrom a Single-Centre, cross-sectional study, Lancet Haematol 7 (2020) e575–e582.
15. M.K. Bohn, G. Lippi, A. Horvath, et al., Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence, Clin. Chem. Lab. Med. 58 (2020) 1037–1052, https://doi.org/10.1515/ cclm-2020-0722.
16. Y.C. Liao, W.G. Liang, F.W. Chen, et al., IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha, J. Immunol. 169 (2002) 4288–4297, https://doi.org/10.4049/jimmunol.169.8.4288.
17. J. Gong, H. Dong, S.Q. Xia, Y.Z. Huang, D. Wang, Y. Zhao, et al., Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia. medRxiv, (2020 Feb 27) 2020.02.25.20025643.
18. W. Ji, G. Bishnu, Z. Cai, X. Shen, Analysis Clinical Features of COVID-19 Infection in Secondary Epidemic Area and Report Potential Biomarkers in Evaluation. medRxiv, (2020 Mar 13) 2020.03.10.20033613.
19. C. Tan, Y. Huang, F. Shi, K. Tan, Q. Ma, Y. Chen, et al., C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early, J. Med. Virol. (2020 Apr 13).
20. S. Mahajan, C.E. Decker, Z. Yang, D. Veis, E.D. Mellins, R. Faccio, Plcγ2/Tmem178 dependent pathway in myeloid cells modulates the pathogenesis of cytokine storm syndrome, J. Autoimmun. 100 (2019) 62–74 Jun.
21. N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, et al., Epidemiological
and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet 395 (10223) (2020) 507–513.
22. E.A. Coomes, H. Haghbayan, Interleukin-6 in COVID-19: A Systematic Review and Meta-Analysis, medRxiv, 2020 Apr 3 2020.03.30.20048058.
23. Yang J, Zhao X, Liu X, Sun W, Zhou L, Wang Y, et al. Clinical characteristics and eosinophils in young SARS-CoV-2-positive chinese travelers returning to shanghai. Front Public Health. (2020) 8:368. doi: 10.3389/fpubh.202000368
24. Yang J, Zhao X, Liu X, Sun W, Zhou L, Wang Y, et al. Clinical characteristics and eosinophils in young SARS-CoV-2-positive chinese travelers returning to shanghai. Front Public Health. (2020) 8:368. doi: 10.3389/fpubh.202000368
25. Urra JM, Cabrera CM, Porras L, Ródenas I. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients. Clin Immunol. (2020) 217:108486. doi: 10.1016/j.clim.2020108486
26. Dosanjh A. Eosinophil-derived neurotoxin and respiratory tract infection and inflammation: implications for COVID 19 management. J Interferon Cytokine Res. (2020) 40:443–5. doi: 10.1089/jir.20200066
27. Clinical findings of 35 cases with novel coronavirus pneumonia outside of Wuhan, (cited 2020 Apr 29); Available from, 2020 Apr 17. https://www.researchsquare.com/article/rs-22554/v1.
28. Bao C, Tao X, Cui W, Yi B, Pan T, Young KH, et al. SARS-CoV-2 induced thrombocytopenia as an important biomarker significantly correlated with abnormal coagulation function, increased intravascular blood clot risk and mortality in COVID-19 patients. Exp Hematol Oncol. (2020) 9:16. doi: 10.1186/s40164-020-00172-4
29. Hou H, Zhang B, Huang H, Luo Y, Wu S, Tang G, et al. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clin Exp Immunol. (2020) 201:76–84. doi: 10.1111/cei13450
30. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol. (2020) 92:1733–4. doi: 10.1002/jmv25819
31. H. Zhou, Z. Zhang, H. Fan, J. Li, M. Li, Y. Dong, et al., Urinalysis, but Not Blood Biochemistry, Detects the Early Renal-impairment in Patients With COVID-19. medRxiv, (2020 Apr 6) 2020.04.03.20051722.
32. Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta. (2020) 505:190–1. doi: 10.1016/j.cca.2020.03004
33. Y. Nguyen, F. Corre, V. Honsel, et al., Applicability of the CURB-65 pneumonia severity score for outpatient treatment of COVID-19, J. Inf. Secur. 81 (2020) e96–e98
34. Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J, et al. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol
Med. (2020) 12: e12421. doi: 10.15252/emmm202012421
35. Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P. Cytokine levels in critically Ill patients with COVID-19 and other conditions. JAMA. (2020) 324:1565–7. doi: 10.1001/jama.2020.17052
36. Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 Infection. J Clin Med. (2020) 9: E2429. doi: 10.3390/jcm9082429
37. Lin Z, Long F, Yang Y, Chen X, Xu L, Yang M. Serum ferritin as an independent risk factor for severity in COVID-19 patients. J Infect. (2020) 81:647–79. doi: 10.1016/j.jinf.2020.06.053
38. Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. (2020) 14:1753466620937175. doi: 10.1177/1753466620937175
39. Mitchell WB. Thromboinflammation in COVID-19 acute lung injury. Paediatr Respir Rev. (2020) 35:20–4. doi: 10.1016/j.prrv.2020.06.004
40. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. (2020) 18:1324–9. doi: 10.1111/jth.14859
41. Yao Y, Cao J, Wang Q, Shi Q, Liu K, Luo Z, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care. (2020) 8:49. doi: 10.1186/s40560-020-00466-42. Qin JJ, Cheng X, Zhou F, Lei F, Akolkar G, Cai J, et al. Redefining cardiac biomarkers in predicting mortality of inpatients with COVID-19. Hypertension. (2020) 76:1104–12. doi: 10.1161/HYPERTENSIONAHA.12015528
43. Mahajan K, Chand N.egi P, Ganju N, Asotra S. Cardiac biomarker-based risk stratification algorithm in patients with severe COVID-19. Diabetes Metab Syndr. (2020) 14:929–31. doi: 10.1016/j.dsx.2020.06027
44. Henry BM, de Oliveira M, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. (2020) 58:1021–8. doi: 10.1515/cclm-2020-0369
45. Aziz M, Fatima R, Lee-Smith W, Assaly R. The association of low serum albumin level with severe COVID-19: a systematic review and meta-analysis. Crit Care. (2020) 24:255. doi: 10.1186/s13054-020-02995-3
46. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID-19. Amer J Hematol. (2020) 95:834–47. doi: 10.1002/ajh25829
47. Liu R, Ma Q, Han H, Su H, Liu F, Wu K, et al. The value of urine biochemical parameters in the prediction of the severity of coronavirus disease 2019. Clin Chem Lab Med. (2020) 58:1121–4. doi: 10.1515/cclm-2020-0220
48. D. Ferrari, A. Motta, M. Strollo, G. Banfi, M. Locatelli, Routine blood tests as a
49. potential diagnostic tool for COVID-19, Clin. Chem. Lab. Med. (2020) (Apr 16)
50. Ahead of print.
51. W.-J. Guan, Z.-Y. Ni, Y. Hu, W.-H. Liang, C.-Q. Ou, J.-X. He, et al., Clinical characteristics
52. of coronavirus disease 2019 in China, N. Engl. J. Med. 382 (18) (2020)1708–1720 (Feb 28).
53. Zheng Y, Zhang Y, Chi H, Chen S, Peng M, Luo L, et al. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study. Clin Chem Lab Med. (2020) 58:1106–15. doi: 10.1515/cclm-2020-0377
54. Yan X, Li F, Wang X, Yan J, Zhu F, Tang S, et al. Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: a retrospective cross-sectional study. J Med Virol. (2019) 92:2573–81. doi: 10.1002/jmv.26061
55. Ma A, Cheng J, Yang J, Dong M, Liao X, Kang Y. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. Crit Care. (2020) 24:288. doi: 10.1186/s13054-020-03007-0
56. Guan WJ, ZY Ni, Hu Y, Liang WH, Ou CQ, He JX, et al. China medical treatment expert group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. (2020) 382:1708–20. doi: 10.1056/NEJMoa2002032.