1. 1-Funk C. The etiology of the deficiency diseases. Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. J State Med 1912; 20: 341.
2-Rosenfeld L. Vitamine- vitamin. The early years of discovery. Clin Chem 1997; 43(4):680-685.
3-Semba RD. Bloem MW. The anemia of vitamin A deficiency: Epidemiology and pathogenesis .Euro J Clin Nutr 2002; 56(4):271-281.
4-Sánchez-Hernández D. G. Anderson H. Poon AN. et al. “Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research”. Nutr Res 2016;36( 10): pp 1045–1054, 2016.
5-Chawlac J. Kvarnberg D. “Hydro soluble vitamins,” Handbook of Clinical Neurology 2014; 120: pp 891–914.
6-Bender DA. Nutritional biochemistry of the vitamins. 2nd ed. United Kingdom: Cambridge University Press; 2003; 470.
7-Combs GF. The Vitamins: Fundamental aAspects in nutrition and health. 4th ed. London: Academic Press; 2012: pp 33-70.
8-Maltz A. Funk C. Nonconformist nomenclature, and networks surrounding the discovery of vitamins. J Nutr. 2013;143(7):1013-1020.
9-Fidanza A. Audisio M. Vitamins and lipid metabolism. Acta Vitaminologica Et Enzymologica 1982;4(1-2):105-114
10-Eggersdorfer M. Laudert D. Létinois U. McClymont T. et al. One hundred years of vitamins—A success story of the natural sciences. Angew Chem Int Ed Engl. 2012; 51:pp 12960–12990.
11-Ball G.F.M. Vitamins in Foods: Analysis, Bioavailability, and Stability; CRC Press: Boca Raton, FL, USA, 2005.
12-Blaner WS. Li Y. Brun, P.-J. Yuen J J. Lee S.A. Clugston RD. Vitamin A Absorption, Storage and Mobilization. Subcell. Biochem. 2016; 81: 95–125.
13-Parker RS. Absorption, metabolism, and transport of carotenoids. FASEB J 1996; 10:542–551.
14-Fiedor J. Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutr 2014; 6: 466–488.
15-Cantin AM. White TB, Cross CE. Forman_HJ.et al. Antioxidants in cystic fibrosis. Conclusions from the CF Antioxidant Workshop, Bethesda, Maryland, November 11-12, 2003. Free Radical Biology and Medicine 2007; 42(1):15-31.
16- Hammond BR. Renzi LM. Carotenoids. Adv Nutr 2013; 4(4):474-6.
17-Herschel Conaway H. Henning P. Lerner UH. Vitamin A metabolism, action, and role in skeletal homeostasis. Endocr. Rev 2013; 34: 766–797.
18- Huang Z. Liu Y. Qi G. Brand D. Zheng S. Role of vitamin A in the immune system. J. Clin. Med 2018; 7:258.
19-West KP. Vitamin A deficiency disorders in children and women. Food Nutr Bull 2003; 24(4 Suppl):S78-90.
20-Saxby N. Painter_C. Kench_A. King_S. et al. Nutrition Guidelines for Cystic Fibrosis in Australia and New Zealand. Thoracic Society of Australia and New Zealand. 2017. https://www.thoracic.org.au/documents/item/1045.
21-Ross AC. Stephensen CB. Vitamin A and retinoids in antiviral responses. FASEB J 1996;10:979–985.
22-Napoli JL. Retinoic acid biosynthesis and metabolism. FASEB J : Official publication of the Federation of American Societies for Experimental Biology 1996; 10(9):993-1001.
23-Borowitz D. Baker_RD. Stallings_V. Consensus report on nutrition for pediatric patients with cystic fibrosis. J Pediatric Gastro Nutr 2002; 35(3):246-59.
24-Jimenez-Jimenez FJ. Fernandez-Calle P. Vazquez A. Serum levels of vitamin A in Parkinson’s disease. J Neurol Sci 1992;111(1):73-6.
25-Centers for Disease Control and Prevention. Second national report on biochemical indicators of diet and nutrition in the U.S. population. 2012 April. www.cdc.gov/nutritionreport/ Report.
26-Smith FR. Goodman DS. Vitamin A transport in human vitamin A toxicity. New England J Med 1976; 294:805–808.
27-Penniston_KL. Tanumihardjo SA. The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 2006; 83(2):191-201.
28-Mele L . West KP Jr. Kusdiono PA. et al. Nutritional and household risk factors for xerophthalmia in Aceh, Indonesia: a case–control study. Amer J Clin Nutr 1991; 53:1460–1465.
29-Erdman J Jr. The physiologic chemistry of carotenes in man. Clin Nutr 1988; 7:101–106.
30- Sommer A. Vitamin A deficiency and its consequences: a field guide to detection and control, 3rd ed. Geneva, World Health Organization, 1994.
31-.Bloem MW. Matzger H. Huq N. Vitamin A deficiency among women in the reproductive years: an ignored problem. In: Report of the XVI IVACG Meeting. Washington, DC, International Vitamin A Consultative Group, ILSI Human Nutrition Institute, 1994.
32-Christian P. West KP. Jr. Subarna KK. et al. Night blindness of pregnancy in rural Nepal—nutritional and health risks. Inter J Epidem 1998, 27:231–237.
33.Wallingford JC. Underwood BA. Vitamin A deficiency in pregnancy, lactation, and the nursing child. In: Baurenfeind JC, ed. Vitamin A deficiency and its control. New York, NY, Academic Press. 1986:101–152.
34.Newman V. Vitamin A and breast-feeding: a comparison of data from developed and developing countries. Food and Nutr Bulletin 1994; 15:161–176.
35-Institute of Medicine. Dietary Reference Intake for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academies Press .2001.
36-Thirumdas R. Kothakota A. Pandiselvam R. Bahrami A. Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: a review. Trends Food Sci Technol. 2021;110:66–77.
37-Caccialanza R. Laviano A. Lobascio F. et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020;74:110835.
38-Bikle DD. Chemistry & biology review vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol 2014; 21: 319–329.
39-Blunt JW. DeLuca HF. Schnoes HK. 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochem 1968; 7:3317–22.
40-Fraser DR. Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 1970; 228:764–766.
41-Jones G. Strugnell S. DeLuca HF. Current understanding of the molecular actions of vitamin D. Phys Rev 1998;78:1193–1231.
42-Jones G. DeLuca HF. HPLC of vitamin D and its metabolites. In: Makin HLJ. Newton R. eds. High performance liquid chromatography and its application to endocrinology. Berlin, Springer-Verlag, 1988; 95–139 (Monographs on Endocrinology, vol 30).
43-Brown EM. Pollak M. Hebert SC. The extracellular calcium-sensing receptor: its role in health and disease. Annual Rev Med 1998; 49:15–29.
44-Murad MH. Elamin KB. Abu Elnour NO. Elamin MB. et al. Clinical review: The effect of vitamin D on falls: A systematic review and meta-analysis. J Clin Endocri Metab 2011;96(10): 2997-3006.
45-Fraser DR. Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 1970; 228:764–766.
46-Aliasgharpour M. Technical Points in Vitamin D Measurement Assays .Int J Med Invest 2019; 8( 2): 1-5.
47-Food and Nutrition Board. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC, National Academy Press 1997.
48-Samuel S . Sitrin MD. Vitamin D’s role in cell proliferation and differentiation. Nutr Rev 2008; 66(10) Suppl 2: pp S116–S124.
49-Myszka M. Klinger M. The immunomodulatory role of vitamin D. Postȩpy Higieny i Medycyny Doświadczalnej 2014; (68) :pp 865–878.
50-Kono K. Fujii H. Nakai K.et al. Anti-oxidative effect of vitamin D analog on incipient vascular lesion in non-obese type 2 diabetic rats. Am J Nephr 2013; 37(2): pp 167–174.
51- Sahota O. Understanding vitamin D deficiency. Age and Ageing 2014 ; 43( 5): pp 589–591.
52-Newmark HL. Newmark j. Vitamin D and Parkinson’s disease—a hypothesis. Movement Disorders 2007; 22( 4): pp 461–468.
53-Wang D. Yang Y. Yu G. Shao. Wang Q. Vitamin D and sunlight exposure in newly-diagnosed Parkinson’s disease. Nutrients 2016; 8( 3) p 142.
54-Zhu D. Lin GY. Wen. S. Wang. WZ. Inverse associations of outdoor activity and vitamin D intake with the risk of Parkinson’s disease. J Zhejiang Univer Sci B 2014; 15(10) pp 923–927.
55-Evatt ML. DeLong M. Kumari M. et al. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch Neur 2011;68(3) pp 314–319.
56-Muir SW. Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: A systematic review and meta-analysis. J Am Geriatr Soc 2011;59: 2291-2300.
57-Sato Y. Manabe S. Kuno H. Oizumi K. Amelioration of osteopenia and hypovitaminosis D by 1α-hydroxyvitamin D3 in elderly patients with Parkinson’s disease. J Neuro, Neurosur, Psychi 1999; 66(1) pp 64–68.
58-Knekt P. Kilkkinen A. Rissanen H. Marniemi J. et al. Serum vitamin D and the risk of Parkinson disease. Archi Neuro 2010; 67(7):808–811.
59-Evatt ML. Delong MR. Khazai N. Rosen A. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Archi Neuro 2008; 65(10) 1348–1352.
60-Liu Y. Zhang BS. Serum 25-hydroxyvitamin D predicts severity in Parkinson’s disease patients. Neuro
Sci 2014; 35(1) 67–71.
61-Sleeman I. Aspray T. Lawson R. et al. The role of vitamin D in disease progression in early Parkinson’s disease. J Parkinson's Dis 2017; 7( 4) pp 669–675.
62-Suzuki M. Yoshioka M. Hashimoto M. et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutri 2013;. 97( 5) pp 1004–1013.
63-Mercola J. Grant WB. Wagner CL. Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients 2020;31:12(11): 3361.
64-Ilie PC . Stefanescu S. Smith L. The role of vitamin D in the prevention of coronavirus disease. 2019 infection and mortality. Aging Clin Exp Res 2020;32:1195–98.
65-Rhodes JM. Subramanian S. Laird E. Kenny RA. Editorial: Low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther. 2020;51: 1434–1437.
66-Holick MF. Vitamin D- new horizons for the 21st century. McCollum Award Lecture. Am J Clin Nutri 1994; 60:619–630.
67-Vitamin and mineral requirements in human nutrition : report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September 1998. ISBN :924154612 3.
68-Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, D.C: National Academies Press; 2011.
69-Lachance PA. International perspective: basis, need and application of recommended dietary allowances. Nutri Rev 1998; 56:S2–S4.
70-Colombo ML. An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules 2010;. 15( 4)
pp 2103–2113.
71-Beharka A. Redican S. Leka L. Meydani SN. Vitamin E status and immune function. Methods Enzy 1997; 282 pp 247–263.
72-Cesari M. Pahor M. Bartali B. et al. Antioxidants and physical performance in elderly persons: the Invecchiare in
Chianti (InCHIANTI) study . Am J Clin Nutri 2004; 79( 2) pp 289–294.
73-Cherubini A. Andres-Lacueva MC. et al. Vitamin E levels, cognitive impairment and dementia in older persons: the InCHIANTI study. Neuro Aging, 2005; 26(7): pp 987–994.
74-Sies H, Berndt C. Jones DP. Oxidative stress .Annual Rev Bioch 2017; 86(1) pp 715–748.
75-Kagan VE. Recycling and redox cycling of phenolic antioxidants. Annals New York Acad Sci 1998; 854:425–434.
76-National Research Council, Committee on Dietary Allowances: Recommended Dietary Allowances.10th revised ed. Washington, D.C, National Academy of Sciences;1989.
77-Traber MG. Regulation of human plasma vitamin E. In: Sies H, ed. Antioxidants in disease mechanisms and therapeutic strategies. San Diego, CA, Academic Press;1996:49–63.
78-Simoin EJ. Eisengart A. Sundheim L. et al. The metabolism of vitamin E: II. Purification and characterization of urinary metabolites of α-tocopherol. J Biol Chem 1956;.221:807.
79-McLaren DS. et al. Fat soluble vitamins. In: Garrow JS, James WPT, eds. Human nutrition and dietetics. Edinburgh, Churchill Livingstone 1993; 208–238.
80-Traber MG. Sokol RJ. Burton GW. et al. Impaired ability of patients with familial isolated vitamin E deficiency to incorporate a-tocopherol into lipoproteins secreted by the liver. J Clin Invest 1990; 85:397-407.
81-Clarke MW. Burnett JR. Croft KD. Vitamin E in human health and disease. Criti Rev Clin Lab Sci 2008; 45(5) pp 417–450.
82-Di Mascio P. Murphy ME. Sies H. Antioxidant defense systems: The role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 1991; 53:194S–200S.
83.Brown KM. Morrice PC. Duthie GG. Erythrocyte vitamin E and plasma ascorbate concentrations in relation to erythrocyte peroxidation in smokers and non-smokers: dose–response of vitamin E supplementation. Am J Clin Nutr 1997; 65:496–502.
84- Li D. Saldeen T. Romeo F. Mehta JL. Different isoforms of tocopherols enhance nitric oxide synthase phosphorylation and inhibit human platelet aggregation and lipid peroxidation: Implications in therapy with vitamin E. J Cardiovasc Pharmacol Ther 2001; 6:155–61.
85-Liu M. Wallmon A. Olsson-Mortlock C. Wallin R. SaldeenT. Mixed tocopherols inhibit platelet aggregation in humans: Potential mechanisms. Am J Clin Nutr 2003; 77:700–6.
86-de Rijk MC. Breteler MM.den Breeijen J. et al. Dietary antioxidants and Parkinson disease. The Rotterdam
Study, Arch Neuro1997; 54(6) pp 762–765.
87-Zhang SM. Hernan MA. Chen H. Spiegelman D. et al. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk,” Neuro 2002; 59(8) pp 1161–1169.
88-Logroscino G. Marder K. Cote L. Tang MX. et al. Dietary lipids and antioxidants in Parkinson’s disease: a population-based, case-control study,” Annals of Neuro1996;39(1) pp 89–94.
89-Fernández-Quintela A . Milton-Laskibar I. Trepiana J. et al. Key aspects in nutritional management of COVID-19 Patients. J. Clin. Med 2020; 9: 2589.
90-Maggini S. Beveridge S. Sorbara PJ. Senatore G. Feeding the immune system: the role of micronutrients in restoring resistance to infections, CAB reviews: perspectives in agriculture, Vet. Sci. Nutr. Nat. Resour.2008; 3 : 1–21.
91-Prenticec S. They are what you eat: can nutritional factors during gestation and early infancy modulate the neonatal immune response? Front. Immunol 2017;8: 1641.
92-De la Fuente M. Hernanz A. Guayerbas N. Victor M. Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic. Res. 2008;42 :272–280.
93- Sano M. Ernesto C. Thomas RG. Klauber MR. et al. A controlled trial of selegiline, alphatocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 1997;336:1216–22.
94- Meydani M. Vitamin E. Lancet 1995; 345:170–5.
95-Mielech A. Puscion-Jakubik A. et al. Vitamins in Alzheimer Disease- Review of the latest reports. Nutrients2020;12:3458.
96-.Mangialasche F. Kivipelto M. Mecocci P. Rizzuto D.et al. High plasma levels of vitamin E forms and reduced Alzheimer’s disease risk in advanced age. J Alzheimer’s Dis 2010; 20:1029–37.
97-Mangialasche F. Westman E. Kivipelto M. Muehlboeck JS. et al. Classification and prediction of clinical diagnosis of Alzheimer’s disease based on MRI and plasma measures of α-/γ-tocotrienols and γ-tocopherol. J Intern Med 2013; 273:602–21.
98-keen MA. Hassan L. Vitamin E in dermatology. Indian Dermatol Online J 2016;7(4):311-5.
99-Rattanawiwatpong P. Wanitphakdeedecha R. Bumrungpert A. et al. Anti aging and brightening effects of a topical treatment contaninig vitamin C, vitamin E, and raspberry leaf cell culture extract; A split face randomized controlled trial. J cosmet Dermatol. 2020 ;19(3):671-676.
100-Lintner K. Gerstein F. Solish N. A serum containing vitamin C and E and a matrix – repair tripeptide reduces facial signs of aging as evidenced by primos analysis and frequently repeated auto perception. J Cosmet Dermatol 2020;19(12): 3262-3269.
101- Norton L. Further observations on the yellow nail syndrome with therapeutic effect of oral alpha-tocophero. Cutis. 1985;36:457–62.
102- Al Hawsawi K. Pope E. Yellow nail syndrome. Pediatr Dermatol. 2010;27:675–6.
103- Barbosa E. Faintuch J. Machado Moreira EA. Gonçalves da Silva VR. et al. Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: A randomized, double- blind, placebo-controlled pilot study. J Burn Care Res 2009;30:859–66.
104-Suttie JW. Vitamin K. In: Diplock AD. ed. Fat-soluble vitamins: their biochemistry and applications. London, Heinemann 1985:225–311.
105-Krueger T. Westenfeld R. Schurgers L. et al. Coagulation meets calcification: the vitamin K system. Int J Artif Organs 2009;32:67–74.
106-Booth SL. Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr 1998;128:785–8.
107- Schurgers LJ. Cranenburg EC. Vermeer C. Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb Haemost 2008;100:593–603.
108-Beulens JW. Booth SL. van den Heuvel EG. et al. The role of menaquinones (vitamin K(2)) in human health. Br J Nutr 2013;110:1357–68.
109-Thane CW. Bolton-Smith C. Coward WA. Comparative dietary intake and sources of phylloquinone (vitamin K1) among British adults in 1986–7 and 2000–1. Br J Nutr 2006;96:1105–15.
110-Schurgers LJ. Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 2000;30:298–307.
111-Elder SJ. Haytowitz DB. Howe J. et al. Vitamin K contents of meat, dairy, and fast food in the US. Diet. J Agric Food Chem 2006;54:463–7.
112- Suttie JW. Vitamin K: In Health and Disease. CRC Press, 2009.
113-Olson RE. The function and metabolism of vitamin K. Annu Rev Nutr 1984; 4:281-337.
114-Mihatsch WA. Braegger C. Bronsky J. Campoy C. Domellöf M.et al. ESPGHAN Committee on Nutrition. Prevention of vitamin K deficiency bleeding in newborn infants: A Position Paper by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 2016; 63(1):123-9.
115-Shearer MJ. McBurney A. Barkhan P. Studies on the absorption and metabolism of phylloquinone (vitamin K1) in man. Vitam Horm 1974;32:513-42.
116-Furie B, Furie BC. Molecular basis of vitamin K-dependent g-carboxylation. Blood 1990; 75:1753–62.
117-Davie EW. Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost 1995; 74:1–6.
118-Shearer MJ. Newman P. Metabolism and cell biology of vitamin K. Thromb Haemost 2008;100:530-47.
119-Kohlmeier M .et al. Transport of vitamin K to bone in humans. J Nutr 1996; 126 (Suppl.):S1192–S1196.
120-Shea MK. O’Donnell CJ. Hoffmann U. et al. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am J Clin Nutr 2009;89:1799–807.
121-Schurgers LJ. Spronk HM. Soute BA. et al. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood 2007;109:2823–31.
122-Von Kries R, Shearer MJ, Göbel U. Vitamin K in infancy. Euro J Pediat, 1988, 147:106–112.
123-Shunsuke A. Akira S. Vitamin K deficiency bleeding in infancy. Nutrients 2020; 12:780
124-Jagannath VA. Thaker V.Chang AB. Price AL. Vitamin K supplementation for Cystic Fibrosis. Cochrone Database of Systematic Reviews 2020; issue (6).Art#:CD008482.
125- Wilson A: Disorders of vitamins; Deficiency, excess, and errors of metabolism. In: Harrison’s principles of internal medicine. 12th ed. Petersdorf RG. Adams RD. Braunwald E.et al. New York, McGraw Hill. Book Company.1991
126- Dofferhoff ASM. Piscaer L. Schurgers LJ. et al. Reduced vitamin K status as a potentially modifiable risk factor of severe Covid-19. Clin Infect Dis 2020; 27:1258.
127-Janssen R .Visser MPJ. Dofferhoff ASM. et al. Vitamin K metabolism as the potential missing link between lung damage and thromboembolism in coronavirus disease. Br J Nutr 2020; 7:1-8.
128- Mehri A. Trace elements in human nutrition (II) – An update. Int J Prev Med 2020;11:2.
129-Hall JA. Grainger JR. Spencer SP. et al. The role of retinoic acid in tolerance and immunity. Immunity 2011;35(1):13-22.
130-Field CJ. Johnson IR. Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol. 2002;71(1):16-32.
131-AL-Sumiadai MM. Ghazzay H. Al-Dulaimy WZS. Therapeutic effect of vitamin A on severe COVID-19 patients. Eurasia J Biosci.2020;14:7347-50.
132-Michienzi SM. Badowski ME. Can vitamins and /or supplements provide hope against coronavirus? Drugs Context. 2020;9:2020-5.
133-Wu JZ P. Zha P. Treatment strategies for reducing damages to lungs in patients with coronavirus and other infections. Preprints. 2020;2020020116.11 .
134-Jones G. Strugnell SA. DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiological Reviews 1998; 78:1193–1231.
135- Misra M. Pacaud D. Petryk A. et al. Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D deficiency in children and it’s management: review of current knowledge and recommendations. Pediatrics 2008; 122:398–417.
136-Holick MF. High prevalence of Vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006; 81:353–73.
137-Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 2004; 79:362–71.
138-Panfili FM. Roversi M. D’Argenio P. et al. Possible role of vitamin D in Covid-19 infection in pediatric population. J Endocrinal Invest. 2021;44(1):27-35.
139-Grant WB. Lahore H. McDonnell SL. et al. Evidence that vitamin D supplementation could reduce risk of influenza and Covid-19 infection and deaths. Nutrients 2020;12(4):988.
140-Xiuzhen Z. Ming Z. Chunxiao Li.et al. Benefits of vitamins in the treatment of Parkinson ’s disease.
Oxid Med Cell Longev 2019; 2019: 9426867 .
141-Delgado-Roche L. Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384–387.
142-Hariharan A. Hakeem AR. Radhakrishnan S. Reddy MS. Rela M. The role and therapeutic potential of NF-Kappa-B pathway in severe COVID-19 patients. Inflammopharmacology 2021;29 (1):91–100.
143-Al-Lami RA. Urban RJ. Volpi E. Algburi AMA. et al. Sex hormones and novel corona virus infectious disease (COVID- 19). Mayo Clin Proc 2020; 95(8):1710–1714.
144-de Las Heras N. Martín Giménez VM. Ferder L. Manucha W.et al. Implications of oxidative stress and potential role of mitochondrial dysfunction in COVID-19: therapeutic effects of Vitamin D. Antioxidants (Basel) 2020;9(9):897.
145-Kozlov EM. Ivanova E. Grechko AV. Wu WK. Starodubova AV. Orekhov AN. Involvement of oxidative stress and the innate immune system in SARS-CoV-2 infection. Diseases 2021;9 (1):17.
146-Azkur AK. Akdis M. Azkur D. et al. Immune response to SARS- CoV-2 and mechanisms of immunopathological changes in COVID- 19. Allergy 2020;75(7):1564–1581.
147-Okebukola PO. Kansra S. Barrett J. Vitamin E supplementation in people with cystic fibrosis. Cochrane Data base Syst Rev.2020.
148-Dam H. Schonheyder F. Tage-Hansen E. Studies on the mode of action of vitamin K. Biochem J 1936;30:1075-9.
149-Booth SL. Roles for vitamin K beyond coagulation. Annu Rev Nutr 2009;29:89–110.
150-Maresz K. Proper calcium use: vitamin K2 as a promoter of bone and cardiovascular health. Integr Med (Encinitas). 2015;14 (1):34–39 .
151-Mukai K. Itoh S. Morimoto H. Stopped-flow kinetic study of vitamin E regeneration reaction with biological hydroquinones (reduced forms of ubiquinone, vitamin K, and tocopherolquinone) in solution. J Biol Chem. 1992;267(31):22277–81.
152-Vervoort LM. Ronden JE. Thijssen HH. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem Pharmacol. 1997;54(8):871–876.
153-Hodges SJ. Pitsillides AA. Ytrebø LM. Soper R. Anti-inflammatory actions of vitamin K. In: Vitamin K2: Vital for Health and Wellbeing. 2017;153
154.Hamblin J. Why Some People Get Sicker Than Others ? COVID- 19 is proving to be a disease of the immune system. This could, in theory, be controlled. 2020. Available from: https://www.theatlan tic.com/health/archive/2020/04/coronavirus-immune-response/ 610228.
155.Velavan TP. Meyer CG. Mild versus severe COVID-19: laboratory markers. Int J Infect Dis. 2020;95:304–307.
156-Chakraverty R. Davidson S. Peggs K. et al. The incidence and cause of coagulopathies in an intensive care population. Br J Haematol. 1996;93(2):460–463.
157-Crowther MA. McDonald E. Johnston M. Cook D. Vitamin K deficiency and D-dimer levels in the intensive care unit: a prospective cohort study. Blood Coagul Fibrinolysis. 2002;13(1):49– 52.
158-Turshudzhyan A. Anticoagulation options for Coronavirus Disease 2019 (COVID-19)-induced coagulopathy. Cureus. 2020;12(5):e8150.
159-Piscaer I. van den Ouweland JMW. Vermeersch K. et al. Low Vitamin K status is associated with increased elastin degradation in chronic obstructive pulmonary disease. J Clin Med. 2019;8 (8):1116.
160- Maqbool A. Stallings VA .Update on fat-soluble vitamins in cystic fibrosis. Current Opinion in Pulmonary Medicine 2008; 14 (6): 574–81.