[Home ] [Archive]    
:: Main About journal Editorial Board Current Issue Archive Submit an article Site Map Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Editorial Board::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 4 (12-2022) ::
Int J Med Invest 2022, 11(4): 49-68 Back to browse issues page
Fat Soluble Vitamins Role in Health Promotion
Mehri Aliasgharpour *
Member of Biochemistry Laboratory Faculty, Reference Health ‎Laboratory, Iran Ministry of Health & Medical Education, Tehran, Iran
Abstract:   (1133 Views)
Vitamins as a class of essential nutrients in trace quantities are required for normal growth, and reproduction. They are studied in two categories; fat soluble vitamins and water soluble vitamins that are functional in many ways to maintain healthy immune system response for disease prevention, and to improve cognitive functions. The main aims of the present review are on vitamins discovery and classifications, fat soluble vitamins biological functions, conditions of deficiency/toxicity on human health promotion, their possible effect/s regarding COVID-19 infection and common neurological and genetic diseases. For this purpose many basic related literatures as well as new advances on fat soluble vitamins were assessed. Investigations indicated that malabsorption in fat-soluble vitamins is of particular significance in Cystic Fibrosis. In addition, in Parkinson’s and Alzheimer’s patients a diet rich in antioxidant vitamins recommended for their protective role and improvement of the cognitive functions. Furthermore, it is recognized that fat soluble vitamins use, especially vitamins A & D supplements during COVID-19 days in light of their safe and therapeutic range could be beneficial. However, their possible preventive role and/or supportive therapy against COVID-19 are yet controversial. Further clinical studies worldwide will hopefully define their role/s in reducing the severity and complications of the infection. In addition, in the absence of specific treatment for COVID-19 to date, as well as reducing the risks for other deficiency conditions, looking for alternative approaches like improving the availability, affordability and acceptability of healthy diets for  all,  specifically for the most vulnerable groups are  important.
 
Keywords: Fat Soluble Vitamins- Deficiency- Toxicity- Covid-19 Infection- Immune System.
Full-Text [PDF 657 kb]   (857 Downloads)    
Type of Study: Review | Subject: General
References
1. 1-Funk C. The etiology of the deficiency diseases. Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. J State Med 1912; 20: 341. 2-Rosenfeld L. Vitamine- vitamin. The early years of discovery. Clin Chem 1997; 43(4):680-685. 3-Semba RD. Bloem MW. The anemia of vitamin A deficiency: Epidemiology and pathogenesis .Euro J Clin Nutr 2002; 56(4):271-281. 4-Sánchez-Hernández D. G. Anderson H. Poon AN. et al. “Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research”. Nutr Res 2016;36( 10): pp 1045–1054, 2016. 5-Chawlac J. Kvarnberg D. “Hydro soluble vitamins,” Handbook of Clinical Neurology 2014; 120: pp 891–914. 6-Bender DA. Nutritional biochemistry of the vitamins. 2nd ed. United Kingdom: Cambridge University Press; 2003; 470. 7-Combs GF. The Vitamins: Fundamental aAspects in nutrition and health. 4th ed. London: Academic Press; 2012: pp 33-70. 8-Maltz A. Funk C. Nonconformist nomenclature, and networks surrounding the discovery of vitamins. J Nutr. 2013;143(7):1013-1020. 9-Fidanza A. Audisio M. Vitamins and lipid metabolism. Acta Vitaminologica Et Enzymologica 1982;4(1-2):105-114 10-Eggersdorfer M. Laudert D. Létinois U. McClymont T. et al. One hundred years of vitamins—A success story of the natural sciences. Angew Chem Int Ed Engl. 2012; 51:pp 12960–12990. 11-Ball G.F.M. Vitamins in Foods: Analysis, Bioavailability, and Stability; CRC Press: Boca Raton, FL, USA, 2005. 12-Blaner WS. Li Y. Brun, P.-J. Yuen J J. Lee S.A. Clugston RD. Vitamin A Absorption, Storage and Mobilization. Subcell. Biochem. 2016; 81: 95–125. 13-Parker RS. Absorption, metabolism, and transport of carotenoids. FASEB J 1996; 10:542–551. 14-Fiedor J. Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutr 2014; 6: 466–488. 15-Cantin AM. White TB, Cross CE. Forman_HJ.et al. Antioxidants in cystic fibrosis. Conclusions from the CF Antioxidant Workshop, Bethesda, Maryland, November 11-12, 2003. Free Radical Biology and Medicine 2007; 42(1):15-31. 16- Hammond BR. Renzi LM. Carotenoids. Adv Nutr 2013; 4(4):474-6. 17-Herschel Conaway H. Henning P. Lerner UH. Vitamin A metabolism, action, and role in skeletal homeostasis. Endocr. Rev 2013; 34: 766–797. 18- Huang Z. Liu Y. Qi G. Brand D. Zheng S. Role of vitamin A in the immune system. J. Clin. Med 2018; 7:258. 19-West KP. Vitamin A deficiency disorders in children and women. Food Nutr Bull 2003; 24(4 Suppl):S78-90. 20-Saxby N. Painter_C. Kench_A. King_S. et al. Nutrition Guidelines for Cystic Fibrosis in Australia and New Zealand. Thoracic Society of Australia and New Zealand. 2017. https://www.thoracic.org.au/documents/item/1045. 21-Ross AC. Stephensen CB. Vitamin A and retinoids in antiviral responses. FASEB J 1996;10:979–985. 22-Napoli JL. Retinoic acid biosynthesis and metabolism. FASEB J : Official publication of the Federation of American Societies for Experimental Biology 1996; 10(9):993-1001. 23-Borowitz D. Baker_RD. Stallings_V. Consensus report on nutrition for pediatric patients with cystic fibrosis. J Pediatric Gastro Nutr 2002; 35(3):246-59. 24-Jimenez-Jimenez FJ. Fernandez-Calle P. Vazquez A. Serum levels of vitamin A in Parkinson’s disease. J Neurol Sci 1992;111(1):73-6. 25-Centers for Disease Control and Prevention. Second national report on biochemical indicators of diet and nutrition in the U.S. population. 2012 April. www.cdc.gov/nutritionreport/ Report. 26-Smith FR. Goodman DS. Vitamin A transport in human vitamin A toxicity. New England J Med 1976; 294:805–808. 27-Penniston_KL. Tanumihardjo SA. The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 2006; 83(2):191-201. 28-Mele L . West KP Jr. Kusdiono PA. et al. Nutritional and household risk factors for xerophthalmia in Aceh, Indonesia: a case–control study. Amer J Clin Nutr 1991; 53:1460–1465. 29-Erdman J Jr. The physiologic chemistry of carotenes in man. Clin Nutr 1988; 7:101–106. 30- Sommer A. Vitamin A deficiency and its consequences: a field guide to detection and control, 3rd ed. Geneva, World Health Organization, 1994. 31-.Bloem MW. Matzger H. Huq N. Vitamin A deficiency among women in the reproductive years: an ignored problem. In: Report of the XVI IVACG Meeting. Washington, DC, International Vitamin A Consultative Group, ILSI Human Nutrition Institute, 1994. 32-Christian P. West KP. Jr. Subarna KK. et al. Night blindness of pregnancy in rural Nepal—nutritional and health risks. Inter J Epidem 1998, 27:231–237. 33.Wallingford JC. Underwood BA. Vitamin A deficiency in pregnancy, lactation, and the nursing child. In: Baurenfeind JC, ed. Vitamin A deficiency and its control. New York, NY, Academic Press. 1986:101–152. 34.Newman V. Vitamin A and breast-feeding: a comparison of data from developed and developing countries. Food and Nutr Bulletin 1994; 15:161–176. 35-Institute of Medicine. Dietary Reference Intake for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academies Press .2001. 36-Thirumdas R. Kothakota A. Pandiselvam R. Bahrami A. Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: a review. Trends Food Sci Technol. 2021;110:66–77. 37-Caccialanza R. Laviano A. Lobascio F. et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020;74:110835. 38-Bikle DD. Chemistry & biology review vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol 2014; 21: 319–329. 39-Blunt JW. DeLuca HF. Schnoes HK. 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochem 1968; 7:3317–22. 40-Fraser DR. Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 1970; 228:764–766. 41-Jones G. Strugnell S. DeLuca HF. Current understanding of the molecular actions of vitamin D. Phys Rev 1998;78:1193–1231. 42-Jones G. DeLuca HF. HPLC of vitamin D and its metabolites. In: Makin HLJ. Newton R. eds. High performance liquid chromatography and its application to endocrinology. Berlin, Springer-Verlag, 1988; 95–139 (Monographs on Endocrinology, vol 30). 43-Brown EM. Pollak M. Hebert SC. The extracellular calcium-sensing receptor: its role in health and disease. Annual Rev Med 1998; 49:15–29. 44-Murad MH. Elamin KB. Abu Elnour NO. Elamin MB. et al. Clinical review: The effect of vitamin D on falls: A systematic review and meta-analysis. J Clin Endocri Metab 2011;96(10): 2997-3006. 45-Fraser DR. Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 1970; 228:764–766. 46-Aliasgharpour M. Technical Points in Vitamin D Measurement Assays .Int J Med Invest 2019; 8( 2): 1-5. 47-Food and Nutrition Board. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC, National Academy Press 1997. 48-Samuel S . Sitrin MD. Vitamin D’s role in cell proliferation and differentiation. Nutr Rev 2008; 66(10) Suppl 2: pp S116–S124. 49-Myszka M. Klinger M. The immunomodulatory role of vitamin D. Postȩpy Higieny i Medycyny Doświadczalnej 2014; (68) :pp 865–878. 50-Kono K. Fujii H. Nakai K.et al. Anti-oxidative effect of vitamin D analog on incipient vascular lesion in non-obese type 2 diabetic rats. Am J Nephr 2013; 37(2): pp 167–174. 51- Sahota O. Understanding vitamin D deficiency. Age and Ageing 2014 ; 43( 5): pp 589–591. 52-Newmark HL. Newmark j. Vitamin D and Parkinson’s disease—a hypothesis. Movement Disorders 2007; 22( 4): pp 461–468. 53-Wang D. Yang Y. Yu G. Shao. Wang Q. Vitamin D and sunlight exposure in newly-diagnosed Parkinson’s disease. Nutrients 2016; 8( 3) p 142. 54-Zhu D. Lin GY. Wen. S. Wang. WZ. Inverse associations of outdoor activity and vitamin D intake with the risk of Parkinson’s disease. J Zhejiang Univer Sci B 2014; 15(10) pp 923–927. 55-Evatt ML. DeLong M. Kumari M. et al. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch Neur 2011;68(3) pp 314–319. 56-Muir SW. Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: A systematic review and meta-analysis. J Am Geriatr Soc 2011;59: 2291-2300. 57-Sato Y. Manabe S. Kuno H. Oizumi K. Amelioration of osteopenia and hypovitaminosis D by 1α-hydroxyvitamin D3 in elderly patients with Parkinson’s disease. J Neuro, Neurosur, Psychi 1999; 66(1) pp 64–68. 58-Knekt P. Kilkkinen A. Rissanen H. Marniemi J. et al. Serum vitamin D and the risk of Parkinson disease. Archi Neuro 2010; 67(7):808–811. 59-Evatt ML. Delong MR. Khazai N. Rosen A. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Archi Neuro 2008; 65(10) 1348–1352. 60-Liu Y. Zhang BS. Serum 25-hydroxyvitamin D predicts severity in Parkinson’s disease patients. Neuro Sci 2014; 35(1) 67–71. 61-Sleeman I. Aspray T. Lawson R. et al. The role of vitamin D in disease progression in early Parkinson’s disease. J Parkinson's Dis 2017; 7( 4) pp 669–675. 62-Suzuki M. Yoshioka M. Hashimoto M. et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutri 2013;. 97( 5) pp 1004–1013. 63-Mercola J. Grant WB. Wagner CL. Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients 2020;31:12(11): 3361. 64-Ilie PC . Stefanescu S. Smith L. The role of vitamin D in the prevention of coronavirus disease. 2019 infection and mortality. Aging Clin Exp Res 2020;32:1195–98. 65-Rhodes JM. Subramanian S. Laird E. Kenny RA. Editorial: Low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther. 2020;51: 1434–1437. 66-Holick MF. Vitamin D- new horizons for the 21st century. McCollum Award Lecture. Am J Clin Nutri 1994; 60:619–630. 67-Vitamin and mineral requirements in human nutrition : report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September 1998. ISBN :924154612 3. 68-Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, D.C: National Academies Press; 2011. 69-Lachance PA. International perspective: basis, need and application of recommended dietary allowances. Nutri Rev 1998; 56:S2–S4. 70-Colombo ML. An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules 2010;. 15( 4) pp 2103–2113. 71-Beharka A. Redican S. Leka L. Meydani SN. Vitamin E status and immune function. Methods Enzy 1997; 282 pp 247–263. 72-Cesari M. Pahor M. Bartali B. et al. Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study . Am J Clin Nutri 2004; 79( 2) pp 289–294. 73-Cherubini A. Andres-Lacueva MC. et al. Vitamin E levels, cognitive impairment and dementia in older persons: the InCHIANTI study. Neuro Aging, 2005; 26(7): pp 987–994. 74-Sies H, Berndt C. Jones DP. Oxidative stress .Annual Rev Bioch 2017; 86(1) pp 715–748. 75-Kagan VE. Recycling and redox cycling of phenolic antioxidants. Annals New York Acad Sci 1998; 854:425–434. 76-National Research Council, Committee on Dietary Allowances: Recommended Dietary Allowances.10th revised ed. Washington, D.C, National Academy of Sciences;1989. 77-Traber MG. Regulation of human plasma vitamin E. In: Sies H, ed. Antioxidants in disease mechanisms and therapeutic strategies. San Diego, CA, Academic Press;1996:49–63. 78-Simoin EJ. Eisengart A. Sundheim L. et al. The metabolism of vitamin E: II. Purification and characterization of urinary metabolites of α-tocopherol. J Biol Chem 1956;.221:807. 79-McLaren DS. et al. Fat soluble vitamins. In: Garrow JS, James WPT, eds. Human nutrition and dietetics. Edinburgh, Churchill Livingstone 1993; 208–238. 80-Traber MG. Sokol RJ. Burton GW. et al. Impaired ability of patients with familial isolated vitamin E deficiency to incorporate a-tocopherol into lipoproteins secreted by the liver. J Clin Invest 1990; 85:397-407. 81-Clarke MW. Burnett JR. Croft KD. Vitamin E in human health and disease. Criti Rev Clin Lab Sci 2008; 45(5) pp 417–450. 82-Di Mascio P. Murphy ME. Sies H. Antioxidant defense systems: The role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 1991; 53:194S–200S. 83.Brown KM. Morrice PC. Duthie GG. Erythrocyte vitamin E and plasma ascorbate concentrations in relation to erythrocyte peroxidation in smokers and non-smokers: dose–response of vitamin E supplementation. Am J Clin Nutr 1997; 65:496–502. 84- Li D. Saldeen T. Romeo F. Mehta JL. Different isoforms of tocopherols enhance nitric oxide synthase phosphorylation and inhibit human platelet aggregation and lipid peroxidation: Implications in therapy with vitamin E. J Cardiovasc Pharmacol Ther 2001; 6:155–61. 85-Liu M. Wallmon A. Olsson-Mortlock C. Wallin R. SaldeenT. Mixed tocopherols inhibit platelet aggregation in humans: Potential mechanisms. Am J Clin Nutr 2003; 77:700–6. 86-de Rijk MC. Breteler MM.den Breeijen J. et al. Dietary antioxidants and Parkinson disease. The Rotterdam Study, Arch Neuro1997; 54(6) pp 762–765. 87-Zhang SM. Hernan MA. Chen H. Spiegelman D. et al. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk,” Neuro 2002; 59(8) pp 1161–1169. 88-Logroscino G. Marder K. Cote L. Tang MX. et al. Dietary lipids and antioxidants in Parkinson’s disease: a population-based, case-control study,” Annals of Neuro1996;39(1) pp 89–94. 89-Fernández-Quintela A . Milton-Laskibar I. Trepiana J. et al. Key aspects in nutritional management of COVID-19 Patients. J. Clin. Med 2020; 9: 2589. 90-Maggini S. Beveridge S. Sorbara PJ. Senatore G. Feeding the immune system: the role of micronutrients in restoring resistance to infections, CAB reviews: perspectives in agriculture, Vet. Sci. Nutr. Nat. Resour.2008; 3 : 1–21. 91-Prenticec S. They are what you eat: can nutritional factors during gestation and early infancy modulate the neonatal immune response? Front. Immunol 2017;8: 1641. 92-De la Fuente M. Hernanz A. Guayerbas N. Victor M. Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic. Res. 2008;42 :272–280. 93- Sano M. Ernesto C. Thomas RG. Klauber MR. et al. A controlled trial of selegiline, alphatocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 1997;336:1216–22. 94- Meydani M. Vitamin E. Lancet 1995; 345:170–5. 95-Mielech A. Puscion-Jakubik A. et al. Vitamins in Alzheimer Disease- Review of the latest reports. Nutrients2020;12:3458. 96-.Mangialasche F. Kivipelto M. Mecocci P. Rizzuto D.et al. High plasma levels of vitamin E forms and reduced Alzheimer’s disease risk in advanced age. J Alzheimer’s Dis 2010; 20:1029–37. 97-Mangialasche F. Westman E. Kivipelto M. Muehlboeck JS. et al. Classification and prediction of clinical diagnosis of Alzheimer’s disease based on MRI and plasma measures of α-/γ-tocotrienols and γ-tocopherol. J Intern Med 2013; 273:602–21. 98-keen MA. Hassan L. Vitamin E in dermatology. Indian Dermatol Online J 2016;7(4):311-5. 99-Rattanawiwatpong P. Wanitphakdeedecha R. Bumrungpert A. et al. Anti aging and brightening effects of a topical treatment contaninig vitamin C, vitamin E, and raspberry leaf cell culture extract; A split face randomized controlled trial. J cosmet Dermatol. 2020 ;19(3):671-676. 100-Lintner K. Gerstein F. Solish N. A serum containing vitamin C and E and a matrix – repair tripeptide reduces facial signs of aging as evidenced by primos analysis and frequently repeated auto perception. J Cosmet Dermatol 2020;19(12): 3262-3269. 101- Norton L. Further observations on the yellow nail syndrome with therapeutic effect of oral alpha-tocophero. Cutis. 1985;36:457–62. 102- Al Hawsawi K. Pope E. Yellow nail syndrome. Pediatr Dermatol. 2010;27:675–6. 103- Barbosa E. Faintuch J. Machado Moreira EA. Gonçalves da Silva VR. et al. Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: A randomized, double- blind, placebo-controlled pilot study. J Burn Care Res 2009;30:859–66. 104-Suttie JW. Vitamin K. In: Diplock AD. ed. Fat-soluble vitamins: their biochemistry and applications. London, Heinemann 1985:225–311. 105-Krueger T. Westenfeld R. Schurgers L. et al. Coagulation meets calcification: the vitamin K system. Int J Artif Organs 2009;32:67–74. 106-Booth SL. Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr 1998;128:785–8. 107- Schurgers LJ. Cranenburg EC. Vermeer C. Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb Haemost 2008;100:593–603. 108-Beulens JW. Booth SL. van den Heuvel EG. et al. The role of menaquinones (vitamin K(2)) in human health. Br J Nutr 2013;110:1357–68. 109-Thane CW. Bolton-Smith C. Coward WA. Comparative dietary intake and sources of phylloquinone (vitamin K1) among British adults in 1986–7 and 2000–1. Br J Nutr 2006;96:1105–15. 110-Schurgers LJ. Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 2000;30:298–307. 111-Elder SJ. Haytowitz DB. Howe J. et al. Vitamin K contents of meat, dairy, and fast food in the US. Diet. J Agric Food Chem 2006;54:463–7. 112- Suttie JW. Vitamin K: In Health and Disease. CRC Press, 2009. 113-Olson RE. The function and metabolism of vitamin K. Annu Rev Nutr 1984; 4:281-337. 114-Mihatsch WA. Braegger C. Bronsky J. Campoy C. Domellöf M.et al. ESPGHAN Committee on Nutrition. Prevention of vitamin K deficiency bleeding in newborn infants: A Position Paper by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 2016; 63(1):123-9. 115-Shearer MJ. McBurney A. Barkhan P. Studies on the absorption and metabolism of phylloquinone (vitamin K1) in man. Vitam Horm 1974;32:513-42. 116-Furie B, Furie BC. Molecular basis of vitamin K-dependent g-carboxylation. Blood 1990; 75:1753–62. 117-Davie EW. Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost 1995; 74:1–6. 118-Shearer MJ. Newman P. Metabolism and cell biology of vitamin K. Thromb Haemost 2008;100:530-47. 119-Kohlmeier M .et al. Transport of vitamin K to bone in humans. J Nutr 1996; 126 (Suppl.):S1192–S1196. 120-Shea MK. O’Donnell CJ. Hoffmann U. et al. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am J Clin Nutr 2009;89:1799–807. 121-Schurgers LJ. Spronk HM. Soute BA. et al. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood 2007;109:2823–31. 122-Von Kries R, Shearer MJ, Göbel U. Vitamin K in infancy. Euro J Pediat, 1988, 147:106–112. 123-Shunsuke A. Akira S. Vitamin K deficiency bleeding in infancy. Nutrients 2020; 12:780 124-Jagannath VA. Thaker V.Chang AB. Price AL. Vitamin K supplementation for Cystic Fibrosis. Cochrone Database of Systematic Reviews 2020; issue (6).Art#:CD008482. 125- Wilson A: Disorders of vitamins; Deficiency, excess, and errors of metabolism. In: Harrison’s principles of internal medicine. 12th ed. Petersdorf RG. Adams RD. Braunwald E.et al. New York, McGraw Hill. Book Company.1991 126- Dofferhoff ASM. Piscaer L. Schurgers LJ. et al. Reduced vitamin K status as a potentially modifiable risk factor of severe Covid-19. Clin Infect Dis 2020; 27:1258. 127-Janssen R .Visser MPJ. Dofferhoff ASM. et al. Vitamin K metabolism as the potential missing link between lung damage and thromboembolism in coronavirus disease. Br J Nutr 2020; 7:1-8. 128- Mehri A. Trace elements in human nutrition (II) – An update. Int J Prev Med 2020;11:2. 129-Hall JA. Grainger JR. Spencer SP. et al. The role of retinoic acid in tolerance and immunity. Immunity 2011;35(1):13-22. 130-Field CJ. Johnson IR. Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol. 2002;71(1):16-32. 131-AL-Sumiadai MM. Ghazzay H. Al-Dulaimy WZS. Therapeutic effect of vitamin A on severe COVID-19 patients. Eurasia J Biosci.2020;14:7347-50. 132-Michienzi SM. Badowski ME. Can vitamins and /or supplements provide hope against coronavirus? Drugs Context. 2020;9:2020-5. 133-Wu JZ P. Zha P. Treatment strategies for reducing damages to lungs in patients with coronavirus and other infections. Preprints. 2020;2020020116.11 . 134-Jones G. Strugnell SA. DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiological Reviews 1998; 78:1193–1231. 135- Misra M. Pacaud D. Petryk A. et al. Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D deficiency in children and it’s management: review of current knowledge and recommendations. Pediatrics 2008; 122:398–417. 136-Holick MF. High prevalence of Vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006; 81:353–73. 137-Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 2004; 79:362–71. 138-Panfili FM. Roversi M. D’Argenio P. et al. Possible role of vitamin D in Covid-19 infection in pediatric population. J Endocrinal Invest. 2021;44(1):27-35. 139-Grant WB. Lahore H. McDonnell SL. et al. Evidence that vitamin D supplementation could reduce risk of influenza and Covid-19 infection and deaths. Nutrients 2020;12(4):988. 140-Xiuzhen Z. Ming Z. Chunxiao Li.et al. Benefits of vitamins in the treatment of Parkinson ’s disease. Oxid Med Cell Longev 2019; 2019: 9426867 . 141-Delgado-Roche L. Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384–387. 142-Hariharan A. Hakeem AR. Radhakrishnan S. Reddy MS. Rela M. The role and therapeutic potential of NF-Kappa-B pathway in severe COVID-19 patients. Inflammopharmacology 2021;29 (1):91–100. 143-Al-Lami RA. Urban RJ. Volpi E. Algburi AMA. et al. Sex hormones and novel corona virus infectious disease (COVID- 19). Mayo Clin Proc 2020; 95(8):1710–1714. 144-de Las Heras N. Martín Giménez VM. Ferder L. Manucha W.et al. Implications of oxidative stress and potential role of mitochondrial dysfunction in COVID-19: therapeutic effects of Vitamin D. Antioxidants (Basel) 2020;9(9):897. 145-Kozlov EM. Ivanova E. Grechko AV. Wu WK. Starodubova AV. Orekhov AN. Involvement of oxidative stress and the innate immune system in SARS-CoV-2 infection. Diseases 2021;9 (1):17. 146-Azkur AK. Akdis M. Azkur D. et al. Immune response to SARS- CoV-2 and mechanisms of immunopathological changes in COVID- 19. Allergy 2020;75(7):1564–1581. 147-Okebukola PO. Kansra S. Barrett J. Vitamin E supplementation in people with cystic fibrosis. Cochrane Data base Syst Rev.2020. 148-Dam H. Schonheyder F. Tage-Hansen E. Studies on the mode of action of vitamin K. Biochem J 1936;30:1075-9. 149-Booth SL. Roles for vitamin K beyond coagulation. Annu Rev Nutr 2009;29:89–110. 150-Maresz K. Proper calcium use: vitamin K2 as a promoter of bone and cardiovascular health. Integr Med (Encinitas). 2015;14 (1):34–39 . 151-Mukai K. Itoh S. Morimoto H. Stopped-flow kinetic study of vitamin E regeneration reaction with biological hydroquinones (reduced forms of ubiquinone, vitamin K, and tocopherolquinone) in solution. J Biol Chem. 1992;267(31):22277–81. 152-Vervoort LM. Ronden JE. Thijssen HH. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem Pharmacol. 1997;54(8):871–876. 153-Hodges SJ. Pitsillides AA. Ytrebø LM. Soper R. Anti-inflammatory actions of vitamin K. In: Vitamin K2: Vital for Health and Wellbeing. 2017;153 154.Hamblin J. Why Some People Get Sicker Than Others ? COVID- 19 is proving to be a disease of the immune system. This could, in theory, be controlled. 2020. Available from: https://www.theatlan tic.com/health/archive/2020/04/coronavirus-immune-response/ 610228. 155.Velavan TP. Meyer CG. Mild versus severe COVID-19: laboratory markers. Int J Infect Dis. 2020;95:304–307. 156-Chakraverty R. Davidson S. Peggs K. et al. The incidence and cause of coagulopathies in an intensive care population. Br J Haematol. 1996;93(2):460–463. 157-Crowther MA. McDonald E. Johnston M. Cook D. Vitamin K deficiency and D-dimer levels in the intensive care unit: a prospective cohort study. Blood Coagul Fibrinolysis. 2002;13(1):49– 52. 158-Turshudzhyan A. Anticoagulation options for Coronavirus Disease 2019 (COVID-19)-induced coagulopathy. Cureus. 2020;12(5):e8150. 159-Piscaer I. van den Ouweland JMW. Vermeersch K. et al. Low Vitamin K status is associated with increased elastin degradation in chronic obstructive pulmonary disease. J Clin Med. 2019;8 (8):1116. 160- Maqbool A. Stallings VA .Update on fat-soluble vitamins in cystic fibrosis. Current Opinion in Pulmonary Medicine 2008; 14 (6): 574–81.
Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aliasgharpour M. Fat Soluble Vitamins Role in Health Promotion. Int J Med Invest 2022; 11 (4) :49-68
URL: http://intjmi.com/article-1-931-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 4 (12-2022) Back to browse issues page
International Journal of Medical Investigation
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645