logo
Volume 8, Issue 3 (9-2019)                   J Emerg Health Care 2019, 8(3): 1-12 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehrabadi S, Sadr S S, Hoseini M. Stem Cell Conditioned Medium as a Novel Treatment for Neuroinflamation Diseases. J Emerg Health Care 2019; 8 (3) :1-12
URL: http://intjmi.com/article-1-421-en.html
Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Abstract:   (6637 Views)
Inflammation is a most important factor that mentioned as causes of many neurodegeneration disease like Parkinson, Alzheimer and ALS. Neuroinflammation is poorly understood like neuroinflamation in Alzheimer and Parkinson. Studies showed that even chronic peripheral inflammation that observe in many diseases like arthritis can cause neurodegeneration and dementia in some cases. The neuroinflammation in many dementia diseases are local and information is limited about it. One of the most important treatments for dementia diseases like Alzheimer is the use of anti-inflammatory drugs like NSAIDS but unfortunately they have poor therapeutic effects on neuroinflammation. Recent studies investigated that conditioned medium extracted from mesenchymal stem cells have neuromodulator effects even could prevent neurodegeneration in some cases. In this study we review effects of mesenchymal stem cell conditioned medium in different central nervous system (CNS) disease associated with neuroinflammation.
Full-Text [PDF 755 kb]   (2551 Downloads)    
Type of Study: Research | Subject: General

References
1. 1. Bazan NG, Halabi A, Ertel M, Petasis NA. Chapter 34 - Neuroinflammation A2 - Brady, Scott T. In: Siegel GJ, Albers RW, Price DL, editors. Basic Neurochemistry (Eighth Edition). New York: Academic Press; 2012. p. 610-20. 2. Milatovic D, Zaja-Milatovic S, Breyer RM, Aschner M, Montine TJ. Chapter 64 - Neuroinflammation and oxidative injury in developmental neurotoxicity A2 - Gupta, Ramesh C. Reproductive and Developmental Toxicology. San Diego: Academic Press; 2011. p. 847-54. 3. Streit WJ, Mrak RE, Griffin WST. Microglia and neuroinflammation: a pathological perspective. Journal of neuroinflammation. 2004;1(1):14. 4. Yang W-X, Terasaki T, Shiroki K, Ohka S, Aoki J, Tanabe S, et al. Efficient delivery of circulating poliovirus to the central nervous system independently of poliovirus receptor. Virology. 1997;229(2):421-8. 5. Aronsson F, Robertson B, Ljunggren H-G, Kristensson K. Invasion and persistence of the neuroadapted influenza virus A/WSN/33 in the mouse olfactory system. Viral immunology. 2003;16(3):415-23. 6. Brew BJ, Crowe S, Landay A, Cysique LA, Guillemin G. Neurodegeneration and ageing in the HAART era. Journal of Neuroimmune Pharmacology. 2009;4(2):163. 7. Leonard BE. Inflammation, depression and dementia: are they connected? Neurochemical research. 2007;32(10):1749-56. 8. Gao H-M, Zhou H, Hong J-S. Oxidative stress, neuroinflammation, and neurodegeneration. Neuroinflammation and Neurodegeneration: Springer; 2014. p. 81-104. 9. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918-34. 10. Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 2013;501(7465):45. 11. Schwartz M, Deczkowska A. Neurological disease as a failure of brain–immune crosstalk: the multiple faces of neuroinflammation. Trends in immunology. 2016;37(10):668-79. 12. Rajan TS, Giacoppo S, Trubiani O, Diomede F, Piattelli A, Bramanti P, et al. Conditioned medium of periodontal ligament mesenchymal stem cells exert anti-inflammatory effects in lipopolysaccharide-activated mouse motoneurons. Experimental cell research. 2016;349(1):152-61. 13. Sicco CL, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, et al. Mesenchymal stem cell‐derived extracellular vesicles as mediators of anti‐inflammatory effects: Endorsement of macrophage polarization. Stem cells translational medicine. 2017;6(3):1018-28. 14. Guillen MI, Platas J, del Caz P, Dolores M, Mirabet V, Alcaraz MJ. Paracrine anti-inflammatory effects of adipose tissue-derived mesenchymal stem cells in human monocytes. Frontiers in physiology. 2018;9:661. 15. Ding D-C, Chang Y-H, Shyu W-C, Lin S-Z. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell transplantation. 2015;24(3):339-47. 16. Golpanian S, Schulman IH, Ebert RF, Heldman AW, DiFede DL, Yang PC, et al. Concise review: review and perspective of cell dosage and routes of administration from preclinical and clinical studies of stem cell therapy for heart disease. Stem cells translational medicine. 2016;5(2):186-91. 17. Leventhal A, Chen G, Negro A, Boehm M. The benefits and risks of stem cell technology. Oral diseases. 2012;18(3):217-22. 18. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. Journal of molecular and cellular cardiology. 2008;45(4):567-81. PubMed PMID: 18466917. Epub 03/19. 19. Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem cell research. 2011;6(3):206-14. 20. Chimenti I, Smith RR, Li T-S, Gerstenblith G, Messina E, Giacomello A, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation research. 2010;106(5):971-80. 21. Stagg J. Mesenchymal stem cells in cancer. Stem cell reviews. 2008;4(2):119-24. 22. Sell S. On the stem cell origin of cancer. The American journal of pathology. 2010;176(6):2584-94. 23. Maguire G. Stem cell therapy without the cells. Communicative & integrative biology. 2013;6(6):e26631. 24. Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. International journal of molecular sciences. 2017;18(9):1852. 25. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. BioMed research international. 2014;2014. 26. . !!! INVALID CITATION !!! . 27. Zheng C, Nennesmo I, Fadeel B, Henter JI. Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2004;56(4):564-7. 28. Grogan SP, Barbero A, Diaz‐Romero J, Cleton‐Jansen AM, Soeder S, Whiteside R, et al. Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2007;56(2):586-95. 29. Hoseini SJ, Ghazavi H, Forouzanfar F, Mashkani B, Ghorbani A, Mahdipour E, et al. Fibroblast growth factor 1-transfected adipose-derived mesenchymal stem cells promote angiogenic proliferation. DNA and cell biology. 2017;36(5):401-12. 30. Wu SZ, Li YL, Huang W, Cai WF, Liang J, Paul C, et al. Paracrine effect of CXCR4‐overexpressing mesenchymal stem cells on ischemic heart injury. Cell biochemistry and function. 2017;35(2):113-23. 31. Cui C, Cui Y, Gao J, Li R, Jiang X, Tian Y, et al. Intraparenchymal treatment with bone marrow mesenchymal stem cell-conditioned medium exerts neuroprotection following intracerebral hemorrhage. Molecular medicine reports. 2017;15(4):2374-82. 32. Xiang J, Hu J, Shen T, Liu B, Hua F, Zan K, et al. Bone marrow mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke in type 2 diabetic rats. Neuroscience letters. 2017;644:62-6. 33. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68(2):270-81. 34. Citron M. Alzheimer's disease: strategies for disease modification. Nature reviews Drug discovery. 2010;9(5):387. 35. Swomley AM, Förster S, Keeney JT, Triplett J, Zhang Z, Sultana R, et al. Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2014;1842(8):1248-57. 36. Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. Journal of neuroscience research. 2000;62(4):585-90. 37. Lu B, Gottschalk W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Progress in brain research. 128: Elsevier; 2000. p. 231-41. 38. Iannotti C, Li H, Yan P, Lu X, Wirthlin L, Xu X-M. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Experimental neurology. 2003;183(2):379-93. 39. Niimura M, Takagi N, Takagi K, Mizutani R, Tanonaka K, Funakoshi H, et al. The protective effect of hepatocyte growth factor against cell death in the hippocampus after transient forebrain ischemia is related to the improvement of apurinic/apyrimidinic endonuclease/redox factor-1 level and inhibition of NADPH oxidase activity. Neuroscience letters. 2006;407(2):136-40. 40. Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behavioural Brain Research. 2015;293:189-97. 41. Yamazaki H, Jin Y, Tsuchiya A, Kanno T, Nishizaki T. Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimer’s disease. Neuroscience letters. 2015;609:53-7. 42. Lee CD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. Journal of neural transmission. 2010;117(8):949-60. 43. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nature Reviews Immunology. 2011;11(11):775. 44. Noh MY, Lim SM, Oh K-W, Cho K-A, Park J, Kim K-S, et al. Mesenchymal Stem Cells Modulate the Functional Properties of Microglia via TGF‐β Secretion. Stem cells translational medicine. 2016;5(11):1538-49. 45. Iwahara N, Yokokaw K, Saito T, Fujikura M, Manabe T, Matsushita T, et al. Mesenchymal stem cell-conditioned medium induces microglia into M2 phenotype and promotes amyloid β-phagocytosis. Journal of the Neurological Sciences. 2017;381:665. 46. Appel SH, Zhao W, Beers D, Henkel J. The microglial-motoneuron dialogue in ALS. Acta Myologica. 2011;30(1):4. 47. Tandan R, Bradley WG. Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1985;18(3):271-80. 48. Almer G, Guégan C, Teismann P, Naini A, Rosoklija G, Hays AP, et al. Increased expression of the pro‐inflammatory enzyme cyclooxygenase‐2 in amyotrophic lateral sclerosis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2001;49(2):176-85. 49. Wu D-C, Ré DB, Nagai M, Ischiropoulos H, Przedborski S. The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proceedings of the National Academy of Sciences. 2006;103(32):12132-7. 50. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature neuroscience. 2008;11(3):251. 51. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312(5778):1389-92. 52. Fontanilla CV, Gu H, Liu Q, Zhu TZ, Zhou C, Johnstone BH, et al. Adipose-derived stem cell conditioned media extends survival time of a mouse model of amyotrophic lateral sclerosis. Scientific reports. 2015;5:16953. 53. Walker LC, Meadows MR, Du Y, March LK, Jones JK. Adipose-derived stem cell conditioned medium impacts asymptomatic peripheral neuromuscular denervation in the mutant superoxide dismutase (G93A) transgenic mouse model of amyotrophic lateral sclerosis. Restorative neurology and neuroscience. 2018 (Preprint):1-7. 54. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. Journal of cellular biochemistry. 2006;98(5):1076-84. 55. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Experimental neurology. 2010;223(1):229-37. 56. Mazzini L, Mareschi K, Ferrero I, Miglioretti M, Stecco A, Servo S, et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy. 2012;14(1):56-60. 57. Sun H, Bénardais K, Stanslowsky N, Thau-Habermann N, Hensel N, Huang D, et al. Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in amyotrophic lateral sclerosis (ALS)-in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia. PloS one. 2013;8(9):e72926. 58. 王飛霏. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1α: 岡山大学; 2011. 59. Lindvall O, Björklund A. Cell therapy in Parkinson’s disease. NeuroRx. 2004;1(4):382-93. 60. Treciokas LJ, Ansel RD, Markham CH. One to two year treatment of Parkinson's disease with levodopa. California medicine. 1971;114(5):7. 61. Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Translational Neurodegeneration. 2015;4(1):19. 62. Nakhaeifard M, Haji MGK, Goudarzi I, Rezaei A. Conditioned Medium Protects Dopaminergic Neurons in Parkinsonian Rats. Cell journal. 2018;20(3):348-54. 63. Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. Journal of Neuroscience. 2005;25(26):6251-9. 64. Aliaghaei A, Gardaneh M, Maghsoudi N, Salehinejad P, Gharib E. Dopaminergic Induction of Umbilical Cord Mesenchymal Stem Cells by Conditioned Medium of Choroid Plexus Epithelial Cells Reduces Apomorphine-Induced Rotation in Parkinsonian Rats. Archives of Iranian Medicine (AIM). 2016;19(8). 65. Glinka Y, Gassen M, Youdim M. Mechanism of 6-hydroxydopamine neurotoxicity. Advances in Research on Neurodegeneration: Springer; 1997. p. 55-66. 66. Wootla B, Eriguchi M, Rodriguez M. Is multiple sclerosis an autoimmune disease? Autoimmune diseases. 2012;2012. 67. Shimojima C, Takeuchi H, Jin S, Parajuli B, Hattori H, Suzumura A, et al. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. The Journal of Immunology. 2016:1501457. 68. Dahbour S, Jamali F, Alhattab D, Al-Radaideh A, Ababneh O, Al-Ryalat N, et al. Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: Clinical, ophthalmological and radiological assessments of safety and efficacy. CNS neuroscience & therapeutics. 2017;23(11):866-74. PubMed PMID: 28961381. Epub 09/29. 69. Rasmusson I. Immune modulation by mesenchymal stem cells. Experimental cell research. 2006;312(12):2169-79. 70. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2, 3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. The Journal of Immunology. 2000;164(7):3596-9. 71. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, et al. Hepatocyte growth factor mediates MSCs stimulated functional recovery in animal models of MS. Nature neuroscience. 2012;15(6):862. 72. Yousefi F, Ebtekar M, Soudi S, Soleimani M, Hashemi SM. In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunology letters. 2016;172:94-105. 73. Pereira T, Ivanova G, Caseiro AR, Barbosa P, Bártolo PJ, Santos JD, et al. MSCs conditioned media and umbilical cord blood plasma metabolomics and composition. PLoS One. 2014;9(11):e113769. 74. Giacoppo S, Thangavelu SR, Diomede F, Bramanti P, Conti P, Trubiani O, et al. Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: a key role of IL-37. The FASEB Journal. 2017;31(12):5592-608.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.